Control of oblique shock wave/boundary layer interactions using plasma actuators

Control of oblique shock wave/boundary layer interactions using plasma actuators Localized arc filament plasma actuators (LAFPAs) are used for shock wave/boundary layer interaction induced separation control in a Mach 2.3 flow. The boundary layer is fully turbulent with a Reynolds number based on the incompressible momentum thickness of 22,000 and shape factor of 1.37, and the impinging shock wave is generated by a 10° compression ramp. The LAFPAs are observed to have significant control authority over the interaction. The main effect is the displacement of the reflected shock and most of the interaction region upstream by approximately one boundary layer thickness (~5 mm). The initial goal of the control was to manipulate the low-frequency (St~0.03) unsteadiness associated with the interaction region. A detailed investigation of the effect of actuator placement, frequency, and duty cycle on the control authority indicates the actuators’ primary control mechanism is not the manipulation of low-frequency unsteadiness. Detailed measurements and analysis indicate that a modification to the boundary layer through heat addition by the actuators is the control mechanism, despite the extremely small power input of the actuators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Control of oblique shock wave/boundary layer interactions using plasma actuators

Loading next page...
 
/lp/springer_journal/control-of-oblique-shock-wave-boundary-layer-interactions-using-plasma-tsKXXal0vv
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1545-z
Publisher site
See Article on Publisher Site

Abstract

Localized arc filament plasma actuators (LAFPAs) are used for shock wave/boundary layer interaction induced separation control in a Mach 2.3 flow. The boundary layer is fully turbulent with a Reynolds number based on the incompressible momentum thickness of 22,000 and shape factor of 1.37, and the impinging shock wave is generated by a 10° compression ramp. The LAFPAs are observed to have significant control authority over the interaction. The main effect is the displacement of the reflected shock and most of the interaction region upstream by approximately one boundary layer thickness (~5 mm). The initial goal of the control was to manipulate the low-frequency (St~0.03) unsteadiness associated with the interaction region. A detailed investigation of the effect of actuator placement, frequency, and duty cycle on the control authority indicates the actuators’ primary control mechanism is not the manipulation of low-frequency unsteadiness. Detailed measurements and analysis indicate that a modification to the boundary layer through heat addition by the actuators is the control mechanism, despite the extremely small power input of the actuators.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 5, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off