Control of Intracellular Localization and Function of Cx43 by SEMA3F

Control of Intracellular Localization and Function of Cx43 by SEMA3F Connexin genes are considered to form a family of tumor-suppressor genes. However, the mechanism of connexin-mediated growth control is not well understood. We now provide several lines of evidence which suggest that SEMA3F, a member of the class 3 semaphorin family, which is also reported to be a tumor suppressor, controls the intracellular localization and function of connexin 43 (Cx43). We employed a series of rat liver epithelial cell lines, among which we previously found that the level of expression of malignant phenotypes (IAR20 < IAR27E < IAR6-1 < IAR27F) is inversely related to that of gap junctional intercellular communication (GJIC). When we immunostained SEMA3F and Cx43 in these cell lines, the extent of immunostaining in the plasma membrane of both proteins decreased in the order of IAR20 > IAR27E > IAR6-1 > IAR27F, suggesting a close relationship between Cx43 and SEMA3F. Further studies revealed a partial colocalization of SEMA3F and Cx43 in the plasma membrane of IAR20 cells. We also found that both SEMA3F and Cx43 moved from the cytoplasm to the plasma membrane in a mouse papilloma cell line when E-cadherin became functional after transferring the cells from low- to high-calcium conditions. When SEMA3F gene expression was inhibited by siRNA in IAR20 cells, Cx43 localization in the plasma membrane and GJIC ability were reduced. Moreover, we found that SEMA3F binds with the cytoplasmic loop domain of Cx43, employing the yeast two–hybrid complementation and screening assays. Taken together, these results strongly suggest that SEMA3F directly associates with Cx43 and controls its intracellular localization and function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Control of Intracellular Localization and Function of Cx43 by SEMA3F

Loading next page...
 
/lp/springer_journal/control-of-intracellular-localization-and-function-of-cx43-by-sema3f-6V2ELYNQM0
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-007-9051-y
Publisher site
See Article on Publisher Site

Abstract

Connexin genes are considered to form a family of tumor-suppressor genes. However, the mechanism of connexin-mediated growth control is not well understood. We now provide several lines of evidence which suggest that SEMA3F, a member of the class 3 semaphorin family, which is also reported to be a tumor suppressor, controls the intracellular localization and function of connexin 43 (Cx43). We employed a series of rat liver epithelial cell lines, among which we previously found that the level of expression of malignant phenotypes (IAR20 < IAR27E < IAR6-1 < IAR27F) is inversely related to that of gap junctional intercellular communication (GJIC). When we immunostained SEMA3F and Cx43 in these cell lines, the extent of immunostaining in the plasma membrane of both proteins decreased in the order of IAR20 > IAR27E > IAR6-1 > IAR27F, suggesting a close relationship between Cx43 and SEMA3F. Further studies revealed a partial colocalization of SEMA3F and Cx43 in the plasma membrane of IAR20 cells. We also found that both SEMA3F and Cx43 moved from the cytoplasm to the plasma membrane in a mouse papilloma cell line when E-cadherin became functional after transferring the cells from low- to high-calcium conditions. When SEMA3F gene expression was inhibited by siRNA in IAR20 cells, Cx43 localization in the plasma membrane and GJIC ability were reduced. Moreover, we found that SEMA3F binds with the cytoplasmic loop domain of Cx43, employing the yeast two–hybrid complementation and screening assays. Taken together, these results strongly suggest that SEMA3F directly associates with Cx43 and controls its intracellular localization and function.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 31, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off