Control of Cell pH in the T84 Colon Cell Line

Control of Cell pH in the T84 Colon Cell Line Cell pH regulation was investigated in the T84 cell line derived from epithelial colon cancer. Cell pH was measured by ratiometric fluorescence microscopy using the fluorescent probe BCECF. Basal pH was 7.17 ± 0.023 (n= 48) in HEPES Ringer. After acidification by an ammonium pulse, cell pH recovered toward normal at a rate of 0.13 ± 0.011 pH units/min in the presence of Na+, but in the absence of this ion or after treatment with 0.1 mm hexamethylene amiloride (HMA) no significant recovery was observed, indicating absence of Na+ independent H+ transport mechanisms in HEPES Ringer. In CO2/HCO− 3 Ringer, basal cell pH was 7.21 ± 0.020 (n= 35). Changing to HEPES Ringer, a marked alkalinization was observed due to loss of CO2, followed by return to the initial pH at a rate of −0.14 ± 0.012 (n= 8) pH/min; this return was retarded or abolished in the absence of Cl− or after addition of 0.2 mm DIDS, suggesting extrusion of bicarbonate by Cl−/HCO− 3 exchange. This exchange was not Na+ dependent. When Na+ was added to cells incubated in 0 Na+ Ringer while blocking Na+/H+ exchange by HMA, cell alkalinization by 0.19 ± 0.04 (n= 11) pH units was observed, suggesting the presence of Na+/HCO− 3 cotransport carrying HCO− 3 into these cells, which was abolished by DIDS. These experiments, thus, show that Na+/H+ and Cl−/HCO− 3 exchange and Na+/HCO− 3 cotransport participate in cell pH regulation in T84 cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Control of Cell pH in the T84 Colon Cell Line

Loading next page...
 
/lp/springer_journal/control-of-cell-ph-in-the-t84-colon-cell-line-VtMaBmKNs0
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320001108
Publisher site
See Article on Publisher Site

Abstract

Cell pH regulation was investigated in the T84 cell line derived from epithelial colon cancer. Cell pH was measured by ratiometric fluorescence microscopy using the fluorescent probe BCECF. Basal pH was 7.17 ± 0.023 (n= 48) in HEPES Ringer. After acidification by an ammonium pulse, cell pH recovered toward normal at a rate of 0.13 ± 0.011 pH units/min in the presence of Na+, but in the absence of this ion or after treatment with 0.1 mm hexamethylene amiloride (HMA) no significant recovery was observed, indicating absence of Na+ independent H+ transport mechanisms in HEPES Ringer. In CO2/HCO− 3 Ringer, basal cell pH was 7.21 ± 0.020 (n= 35). Changing to HEPES Ringer, a marked alkalinization was observed due to loss of CO2, followed by return to the initial pH at a rate of −0.14 ± 0.012 (n= 8) pH/min; this return was retarded or abolished in the absence of Cl− or after addition of 0.2 mm DIDS, suggesting extrusion of bicarbonate by Cl−/HCO− 3 exchange. This exchange was not Na+ dependent. When Na+ was added to cells incubated in 0 Na+ Ringer while blocking Na+/H+ exchange by HMA, cell alkalinization by 0.19 ± 0.04 (n= 11) pH units was observed, suggesting the presence of Na+/HCO− 3 cotransport carrying HCO− 3 into these cells, which was abolished by DIDS. These experiments, thus, show that Na+/H+ and Cl−/HCO− 3 exchange and Na+/HCO− 3 cotransport participate in cell pH regulation in T84 cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 15, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off