Control of auxin-induced callus formation by bZIP59–LBD complex in Arabidopsis regeneration

Control of auxin-induced callus formation by bZIP59–LBD complex in Arabidopsis regeneration Induction of pluripotent cells termed callus by auxin represents a typical cell fate change required for plant in vitro regeneration; however, the molecular control of auxin-induced callus formation is largely elusive. We previously identified four Arabidopsis auxin-inducible Lateral Organ Boundaries Domain (LBD) transcription factors that govern callus formation. Here, we report that Arabidopsis basic region/leucine zipper motif 59 (AtbZIP59) transcription factor forms complexes with LBDs to direct auxin-induced callus formation. We show that auxin stabilizes AtbZIP59 and enhances its interaction with LBD, and that disruption of AtbZIP59 dampens auxin-induced callus formation whereas overexpression of AtbZIP59 triggers autonomous callus formation. AtbZIP59–LBD16 directly targets a FAD-binding Berberine (FAD-BD) gene and promotes its transcription, which contributes to callus formation. These findings define the AtbZIP59–LBD complex as a critical regulator of auxin-induced cell fate change during callus formation, which provides a new insight into the molecular regulation of plant regeneration and possible developmental programs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Plants Springer Journals

Control of auxin-induced callus formation by bZIP59–LBD complex in Arabidopsis regeneration

Loading next page...
 
/lp/springer_journal/control-of-auxin-induced-callus-formation-by-bzip59-lbd-complex-in-xS4ed5dQq7
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Life Sciences; Life Sciences, general; Plant Sciences
eISSN
2055-0278
D.O.I.
10.1038/s41477-017-0095-4
Publisher site
See Article on Publisher Site

Abstract

Induction of pluripotent cells termed callus by auxin represents a typical cell fate change required for plant in vitro regeneration; however, the molecular control of auxin-induced callus formation is largely elusive. We previously identified four Arabidopsis auxin-inducible Lateral Organ Boundaries Domain (LBD) transcription factors that govern callus formation. Here, we report that Arabidopsis basic region/leucine zipper motif 59 (AtbZIP59) transcription factor forms complexes with LBDs to direct auxin-induced callus formation. We show that auxin stabilizes AtbZIP59 and enhances its interaction with LBD, and that disruption of AtbZIP59 dampens auxin-induced callus formation whereas overexpression of AtbZIP59 triggers autonomous callus formation. AtbZIP59–LBD16 directly targets a FAD-binding Berberine (FAD-BD) gene and promotes its transcription, which contributes to callus formation. These findings define the AtbZIP59–LBD complex as a critical regulator of auxin-induced cell fate change during callus formation, which provides a new insight into the molecular regulation of plant regeneration and possible developmental programs.

Journal

Nature PlantsSpringer Journals

Published: Jan 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off