Contribution of peroxisomal protein importer AflPex5 to development and pathogenesis in the fungus Aspergillus flavus

Contribution of peroxisomal protein importer AflPex5 to development and pathogenesis in the... Peroxisomes are important organelles that have diverse metabolic functions and participate in the pathogenicity of fungal pathogens. Previous studies indicate that most functions of peroxisomes are dependent on peroxisomal matrix proteins, which are delivered from the cytoplasm into peroxisomes by peroxisomal protein importers. In this study, the roles of peroxisomal protein importer AflPex5 were investigated in Aspergillus flavus with the application of gene disruption. AflPex5 deletion mutants failed to localize the fluorescently fused peroxisomal targeting signal 1 (PTS1) proteins to peroxisomes. Deletion of AflPex5 caused defects in sporulation, sclerotial formation, aflatoxin biosynthesis, stress response, and plant infection. Moreover, AflPex5 null mutants exhibited a significant defect in carbon metabolism and oxidants’ clearance. These results indicate that the PTS1 pathway mediated by AflPex5 serves as an important role in the development, metabolism, and pathogenesis of A. flavus. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Genetics Springer Journals

Contribution of peroxisomal protein importer AflPex5 to development and pathogenesis in the fungus Aspergillus flavus

Loading next page...
 
/lp/springer_journal/contribution-of-peroxisomal-protein-importer-aflpex5-to-development-VFdI0AaC8t
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Microbial Genetics and Genomics; Microbiology; Biochemistry, general; Cell Biology; Plant Sciences; Proteomics
ISSN
0172-8083
eISSN
1432-0983
D.O.I.
10.1007/s00294-018-0851-7
Publisher site
See Article on Publisher Site

Abstract

Peroxisomes are important organelles that have diverse metabolic functions and participate in the pathogenicity of fungal pathogens. Previous studies indicate that most functions of peroxisomes are dependent on peroxisomal matrix proteins, which are delivered from the cytoplasm into peroxisomes by peroxisomal protein importers. In this study, the roles of peroxisomal protein importer AflPex5 were investigated in Aspergillus flavus with the application of gene disruption. AflPex5 deletion mutants failed to localize the fluorescently fused peroxisomal targeting signal 1 (PTS1) proteins to peroxisomes. Deletion of AflPex5 caused defects in sporulation, sclerotial formation, aflatoxin biosynthesis, stress response, and plant infection. Moreover, AflPex5 null mutants exhibited a significant defect in carbon metabolism and oxidants’ clearance. These results indicate that the PTS1 pathway mediated by AflPex5 serves as an important role in the development, metabolism, and pathogenesis of A. flavus.

Journal

Current GeneticsSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off