Contribution of BKCa-Channel Activity in Human Cardiac Fibroblasts to Electrical Coupling of Cardiomyocytes-Fibroblasts

Contribution of BKCa-Channel Activity in Human Cardiac Fibroblasts to Electrical Coupling of... Cardiac fibroblasts are involved in the maintenance of myocardial tissue structure. However, little is known about ion currents in human cardiac fibroblasts. It has been recently reported that cardiac fibroblasts can interact electrically with cardiomyocytes through gap junctions. Ca2+-activated K+ currents (I K[Ca]) of cultured human cardiac fibroblasts were characterized in this study. In whole-cell configuration, depolarizing pulses evoked I K(Ca) in an outward rectification in these cells, the amplitude of which was suppressed by paxilline (1 μM) or iberiotoxin (200 nM). A large-conductance, Ca2+-activated K+ (BKCa) channel with single-channel conductance of 162 ± 8 pS was also observed in human cardiac fibroblasts. Western blot analysis revealed the presence of α-subunit of BKCa channels. The dynamic Luo-Rudy model was applied to predict cell behavior during direct electrical coupling of cardiomyocytes and cardiac fibroblasts. In the simulation, electrically coupled cardiac fibroblasts also exhibited action potential; however, they were electrically inert with no gap-junctional coupling. The simulation predicts that changes in gap junction coupling conductance can influence the configuration of cardiac action potential and cardiomyocyte excitability. I k(Ca) can be elicited by simulated action potential waveforms of cardiac fibroblasts when they are electrically coupled to cardiomyocytes. This study demonstrates that a BKCa channel is functionally expressed in human cardiac fibroblasts. The activity of these BKCa channels present in human cardiac fibroblasts may contribute to the functional activities of heart cells through transfer of electrical signals between these two cell types. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Contribution of BKCa-Channel Activity in Human Cardiac Fibroblasts to Electrical Coupling of Cardiomyocytes-Fibroblasts

Loading next page...
 
/lp/springer_journal/contribution-of-bkca-channel-activity-in-human-cardiac-fibroblasts-to-MPvOUKS1tH
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-007-0027-8
Publisher site
See Article on Publisher Site

Abstract

Cardiac fibroblasts are involved in the maintenance of myocardial tissue structure. However, little is known about ion currents in human cardiac fibroblasts. It has been recently reported that cardiac fibroblasts can interact electrically with cardiomyocytes through gap junctions. Ca2+-activated K+ currents (I K[Ca]) of cultured human cardiac fibroblasts were characterized in this study. In whole-cell configuration, depolarizing pulses evoked I K(Ca) in an outward rectification in these cells, the amplitude of which was suppressed by paxilline (1 μM) or iberiotoxin (200 nM). A large-conductance, Ca2+-activated K+ (BKCa) channel with single-channel conductance of 162 ± 8 pS was also observed in human cardiac fibroblasts. Western blot analysis revealed the presence of α-subunit of BKCa channels. The dynamic Luo-Rudy model was applied to predict cell behavior during direct electrical coupling of cardiomyocytes and cardiac fibroblasts. In the simulation, electrically coupled cardiac fibroblasts also exhibited action potential; however, they were electrically inert with no gap-junctional coupling. The simulation predicts that changes in gap junction coupling conductance can influence the configuration of cardiac action potential and cardiomyocyte excitability. I k(Ca) can be elicited by simulated action potential waveforms of cardiac fibroblasts when they are electrically coupled to cardiomyocytes. This study demonstrates that a BKCa channel is functionally expressed in human cardiac fibroblasts. The activity of these BKCa channels present in human cardiac fibroblasts may contribute to the functional activities of heart cells through transfer of electrical signals between these two cell types.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 4, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off