Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Contractile properties of periosteal arterioles in the guinea-pig tibia

Contractile properties of periosteal arterioles in the guinea-pig tibia The periosteal arterioles of the compact bone may play a critical role in bone growth. To explore the contractile properties of tibial arterioles, spontaneous and nerve-evoked constrictions were compared in preparations from 3-week-old and 1-year-old guinea-pigs. Changes in arteriole diameters were measured using video microscopy. Their innervation was investigated using fluorescence immunohistochemistry. Fifty per cent and 40% of tibial arterioles from 3-week-old and 1-year-old guinea-pigs, respectively, exhibited spontaneous phasic constrictions that were inhibited by 1 μM nifedipine, 10 μM cyclopiazonic acid or 100 μM 2-APB. Nerve-evoked phasic constrictions in both age groups were largely suppressed by phentolamine (1 μM), an α-adrenoceptor antagonist, or sympathetic neurotransmitter depletion using guanethidine (10 μM) but were enhanced by spanttide (1 μM), a substance P receptor antagonist, or L-nitro arginine (L-NA; 100 μM), an inhibitor of nitric oxide synthase (NOS). Nerve-evoked constrictions in 1-year-old animals were smaller than those in younger animals but greatly enhanced by L-NA. Immunohistochemistry revealed sympathetic and substance P-positive primary afferent nerves running along the arterioles as well as endothelial NOS expression in both age groups. Spontaneous arteriolar constrictions appear to rely on both Ca2+ release from the sarcoplasmic reticulum and Ca2+ influx through L-type Ca2+ channels. Noradrenaline released from sympathetic nerves triggers arteriolar constriction, while substance P released from primary afferent nerves dilates the arterioles by releasing nitric oxide (NO), presumably from the endothelium. Thus, the enhanced endothelial NO release in adult guinea-pigs may be important to increase the blood supply to meet the increased metabolic demands during bone growth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pflügers Archiv European Journal of Physiologyl of Physiology Springer Journals

Contractile properties of periosteal arterioles in the guinea-pig tibia

Loading next page...
1
 
/lp/springer_journal/contractile-properties-of-periosteal-arterioles-in-the-guinea-pig-Jq9Tneh52m

References (40)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Human Physiology; Molecular Medicine; Neurosciences; Cell Biology; Receptors
ISSN
0031-6768
eISSN
1432-2013
DOI
10.1007/s00424-017-1980-4
Publisher site
See Article on Publisher Site

Abstract

The periosteal arterioles of the compact bone may play a critical role in bone growth. To explore the contractile properties of tibial arterioles, spontaneous and nerve-evoked constrictions were compared in preparations from 3-week-old and 1-year-old guinea-pigs. Changes in arteriole diameters were measured using video microscopy. Their innervation was investigated using fluorescence immunohistochemistry. Fifty per cent and 40% of tibial arterioles from 3-week-old and 1-year-old guinea-pigs, respectively, exhibited spontaneous phasic constrictions that were inhibited by 1 μM nifedipine, 10 μM cyclopiazonic acid or 100 μM 2-APB. Nerve-evoked phasic constrictions in both age groups were largely suppressed by phentolamine (1 μM), an α-adrenoceptor antagonist, or sympathetic neurotransmitter depletion using guanethidine (10 μM) but were enhanced by spanttide (1 μM), a substance P receptor antagonist, or L-nitro arginine (L-NA; 100 μM), an inhibitor of nitric oxide synthase (NOS). Nerve-evoked constrictions in 1-year-old animals were smaller than those in younger animals but greatly enhanced by L-NA. Immunohistochemistry revealed sympathetic and substance P-positive primary afferent nerves running along the arterioles as well as endothelial NOS expression in both age groups. Spontaneous arteriolar constrictions appear to rely on both Ca2+ release from the sarcoplasmic reticulum and Ca2+ influx through L-type Ca2+ channels. Noradrenaline released from sympathetic nerves triggers arteriolar constriction, while substance P released from primary afferent nerves dilates the arterioles by releasing nitric oxide (NO), presumably from the endothelium. Thus, the enhanced endothelial NO release in adult guinea-pigs may be important to increase the blood supply to meet the increased metabolic demands during bone growth.

Journal

Pflügers Archiv European Journal of Physiologyl of PhysiologySpringer Journals

Published: May 2, 2017

There are no references for this article.