Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory

Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory We analyze continuous-time quantum and classical random walk on spidernet lattices. In the framework of Stieltjes transform, we obtain density of states, which is an efficiency measure for the performance of classical and quantum mechanical transport processes on graphs, and calculate the spacetime transition probabilities between two vertices of the lattice. Then we analytically show that there are two power law decays ∼ t −3 and ∼ t −1.5 at the beginning of the transport for transition probability in the continuous-time quantum and classical random walk, respectively. This results illustrate the decay of quantum mechanical transport processes is quicker than that of the classical one. Due to the result, the characteristic time t c , which is the time when the first maximum of the probabilities occur on an infinite graph, for the quantum walk is shorter than that of the classical walk. Therefore, we can interpret that the quantum transport speed on spidernet is faster than that of the classical one. In the end, we investigate the results by numerical analysis for two examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory

Loading next page...
 
/lp/springer_journal/continuous-time-quantum-walks-on-semi-regular-spidernet-graphs-via-6BKp7IGSQw
Publisher
Springer US
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-009-0130-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial