Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory

Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory We analyze continuous-time quantum and classical random walk on spidernet lattices. In the framework of Stieltjes transform, we obtain density of states, which is an efficiency measure for the performance of classical and quantum mechanical transport processes on graphs, and calculate the spacetime transition probabilities between two vertices of the lattice. Then we analytically show that there are two power law decays ∼ t −3 and ∼ t −1.5 at the beginning of the transport for transition probability in the continuous-time quantum and classical random walk, respectively. This results illustrate the decay of quantum mechanical transport processes is quicker than that of the classical one. Due to the result, the characteristic time t c , which is the time when the first maximum of the probabilities occur on an infinite graph, for the quantum walk is shorter than that of the classical walk. Therefore, we can interpret that the quantum transport speed on spidernet is faster than that of the classical one. In the end, we investigate the results by numerical analysis for two examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory

Loading next page...
 
/lp/springer_journal/continuous-time-quantum-walks-on-semi-regular-spidernet-graphs-via-6BKp7IGSQw
Publisher
Springer US
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-009-0130-0
Publisher site
See Article on Publisher Site

Abstract

We analyze continuous-time quantum and classical random walk on spidernet lattices. In the framework of Stieltjes transform, we obtain density of states, which is an efficiency measure for the performance of classical and quantum mechanical transport processes on graphs, and calculate the spacetime transition probabilities between two vertices of the lattice. Then we analytically show that there are two power law decays ∼ t −3 and ∼ t −1.5 at the beginning of the transport for transition probability in the continuous-time quantum and classical random walk, respectively. This results illustrate the decay of quantum mechanical transport processes is quicker than that of the classical one. Due to the result, the characteristic time t c , which is the time when the first maximum of the probabilities occur on an infinite graph, for the quantum walk is shorter than that of the classical walk. Therefore, we can interpret that the quantum transport speed on spidernet is faster than that of the classical one. In the end, we investigate the results by numerical analysis for two examples.

Journal

Quantum Information ProcessingSpringer Journals

Published: Sep 4, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off