Continuous-Time Public Good Contribution Under Uncertainty: A Stochastic Control Approach

Continuous-Time Public Good Contribution Under Uncertainty: A Stochastic Control Approach In this paper we study continuous-time stochastic control problems with both monotone and classical controls motivated by the so-called public good contribution problem. That is the problem of n economic agents aiming to maximize their expected utility allocating initial wealth over a given time period between private consumption and irreversible contributions to increase the level of some public good. We investigate the corresponding social planner problem and the case of strategic interaction between the agents, i.e. the public good contribution game. We show existence and uniqueness of the social planner’s optimal policy, we characterize it by necessary and sufficient stochastic Kuhn–Tucker conditions and we provide its expression in terms of the unique optional solution of a stochastic backward equation. Similar stochastic first order conditions prove to be very useful for studying any Nash equilibria of the public good contribution game. In the symmetric case they allow us to prove (qualitative) uniqueness of the Nash equilibrium, which we again construct as the unique optional solution of a stochastic backward equation. We finally also provide a detailed analysis of the so-called free rider effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Continuous-Time Public Good Contribution Under Uncertainty: A Stochastic Control Approach

Loading next page...
 
/lp/springer_journal/continuous-time-public-good-contribution-under-uncertainty-a-L8sTRSNEmP
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-016-9337-5
Publisher site
See Article on Publisher Site

Abstract

In this paper we study continuous-time stochastic control problems with both monotone and classical controls motivated by the so-called public good contribution problem. That is the problem of n economic agents aiming to maximize their expected utility allocating initial wealth over a given time period between private consumption and irreversible contributions to increase the level of some public good. We investigate the corresponding social planner problem and the case of strategic interaction between the agents, i.e. the public good contribution game. We show existence and uniqueness of the social planner’s optimal policy, we characterize it by necessary and sufficient stochastic Kuhn–Tucker conditions and we provide its expression in terms of the unique optional solution of a stochastic backward equation. Similar stochastic first order conditions prove to be very useful for studying any Nash equilibria of the public good contribution game. In the symmetric case they allow us to prove (qualitative) uniqueness of the Nash equilibrium, which we again construct as the unique optional solution of a stochastic backward equation. We finally also provide a detailed analysis of the so-called free rider effect.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Feb 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off