Continuous reverse k nearest neighbors queries in Euclidean space and in spatial networks

Continuous reverse k nearest neighbors queries in Euclidean space and in spatial networks In this paper, we study the problem of continuous monitoring of reverse k nearest neighbors queries in Euclidean space as well as in spatial networks. Existing techniques are sensitive toward objects and queries movement. For example, the results of a query are to be recomputed whenever the query changes its location. We present a framework for continuous reverse k nearest neighbor (R k NN) queries by assigning each object and query with a safe region such that the expensive recomputation is not required as long as the query and objects remain in their respective safe regions. This significantly improves the computation cost. As a byproduct, our framework also reduces the communication cost in client–server architectures because an object does not report its location to the server unless it leaves its safe region or the server sends a location update request. We also conduct a rigid cost analysis for our Euclidean space R k NN algorithm. We show that our techniques can also be applied to answer bichromatic R k NN queries in Euclidean space as well as in spatial networks. Furthermore, we show that our techniques can be extended for the spatial networks that are represented by directed graphs. The extensive experiments demonstrate that our techniques outperform the existing techniques by an order of magnitude in terms of computation cost and communication cost. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Continuous reverse k nearest neighbors queries in Euclidean space and in spatial networks

Loading next page...
 
/lp/springer_journal/continuous-reverse-k-nearest-neighbors-queries-in-euclidean-space-and-f03huMlTVL
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-011-0235-9
Publisher site
See Article on Publisher Site

Abstract

In this paper, we study the problem of continuous monitoring of reverse k nearest neighbors queries in Euclidean space as well as in spatial networks. Existing techniques are sensitive toward objects and queries movement. For example, the results of a query are to be recomputed whenever the query changes its location. We present a framework for continuous reverse k nearest neighbor (R k NN) queries by assigning each object and query with a safe region such that the expensive recomputation is not required as long as the query and objects remain in their respective safe regions. This significantly improves the computation cost. As a byproduct, our framework also reduces the communication cost in client–server architectures because an object does not report its location to the server unless it leaves its safe region or the server sends a location update request. We also conduct a rigid cost analysis for our Euclidean space R k NN algorithm. We show that our techniques can also be applied to answer bichromatic R k NN queries in Euclidean space as well as in spatial networks. Furthermore, we show that our techniques can be extended for the spatial networks that are represented by directed graphs. The extensive experiments demonstrate that our techniques outperform the existing techniques by an order of magnitude in terms of computation cost and communication cost.

Journal

The VLDB JournalSpringer Journals

Published: Feb 1, 2012

References

  • A framework for generating network-based moving objects
    Brinkhoff, T.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off