Continuous recovery of uranium oxides by electrolysis of M2MoO4-M2Mo2O7-UO2MoO4 melts (M = Li, Na, K, Cs)

Continuous recovery of uranium oxides by electrolysis of M2MoO4-M2Mo2O7-UO2MoO4 melts (M = Li,... Effect of the electrolyte composition and of the solvent-salt cation on the oxygen coefficient of the cathodic product (O/U atomic ratio) and basic characteristics of the potentiostatic electrodeposition of uranium dioxide in prolonged recovery of uranium oxides from electrolytes of the system M2MoO4-M2Mo2O7-UO2MoO4 Melts (M = Li, Na, K, Cs) in air was analyzed. A decrease in the UO2MoO4 concentration and accumulation of M2Mo2O7 in the electrolyte in the course of a prolonged electrolysis suppress the solvolysis of uranyl ions and make lower the oxygen coefficient of the cathodic product. Li2MoO4-based melts possessing pronounced oxygenacceptor properties exhibit an anomalous behavior in these experiments. The current efficiency, initial current density, and deposition rate of the product decrease as electrolytes are depleted of uranium. In discussions of numerical data, it is necessary to take into account the formation of lower valence forms of uranium due to the chemical corrosion of the cathodic product, and in the case of melts of the lithium system, the additional cathodic process in which the solvent is reduced. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Continuous recovery of uranium oxides by electrolysis of M2MoO4-M2Mo2O7-UO2MoO4 melts (M = Li, Na, K, Cs)

Loading next page...
 
/lp/springer_journal/continuous-recovery-of-uranium-oxides-by-electrolysis-of-m2moo4-1FhDkSkHUG
Publisher
Springer Journals
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427213020018
Publisher site
See Article on Publisher Site

Abstract

Effect of the electrolyte composition and of the solvent-salt cation on the oxygen coefficient of the cathodic product (O/U atomic ratio) and basic characteristics of the potentiostatic electrodeposition of uranium dioxide in prolonged recovery of uranium oxides from electrolytes of the system M2MoO4-M2Mo2O7-UO2MoO4 Melts (M = Li, Na, K, Cs) in air was analyzed. A decrease in the UO2MoO4 concentration and accumulation of M2Mo2O7 in the electrolyte in the course of a prolonged electrolysis suppress the solvolysis of uranyl ions and make lower the oxygen coefficient of the cathodic product. Li2MoO4-based melts possessing pronounced oxygenacceptor properties exhibit an anomalous behavior in these experiments. The current efficiency, initial current density, and deposition rate of the product decrease as electrolytes are depleted of uranium. In discussions of numerical data, it is necessary to take into account the formation of lower valence forms of uranium due to the chemical corrosion of the cathodic product, and in the case of melts of the lithium system, the additional cathodic process in which the solvent is reduced.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Mar 15, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off