Continuous Fluorescence Depletion Anisotropy Measurement of Protein Rotation

Continuous Fluorescence Depletion Anisotropy Measurement of Protein Rotation Protein rotation in viscous environments can be measured by fluorescence depletion anisotropy (FDA) which combines long lifetimes of chromophore triplet states with the sensitivity of fluorescence excitation and detection. FDA achieves sensitivity well beyond that attainable by the more common technique of time-resolved phosphorescence anisotropy (TPA). We have now combined benefits of both time-domain and frequency-domain FDA into a single continuous technique (CFDA). Intensity and polarization of a single laser beam are modulated continuously according to a complex, repeating waveform. Fluorescence signals excited from triplet-forming fluorescent probes are digitized over recurring waveform periods by a high-speed signal averager. CFDA experiments typically involve substantial ground state depletion. Thus signals, unlike those of TPA, are not linear in the exciting light intensity and simple data analysis based on such linearity is not appropriate. An exact solution of the coupled diffusion and triplet production/decay equation describing CFDA within individual data points has been combined with simulated annealing optimization to extract triplet and anisotropy decay kinetics from experimental data. Related calculations compare possible excitation waveforms with respect to rotational information provided per fluorescence photon. We present CFDA results for the model system of eosin conjugates of carbonic anhydrase, BSA and immunoglobulin G in 90% glycerol at various temperatures and initial cellular results on eosin-IgE bound to 2H3 cell Type I Fcε receptors. We explore how CFDA reflects rotational parameters of heterogeneous systems and discuss challenges of extending this method to single cell microscopic measurements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Fluorescence Springer Journals

Continuous Fluorescence Depletion Anisotropy Measurement of Protein Rotation

Loading next page...
 
/lp/springer_journal/continuous-fluorescence-depletion-anisotropy-measurement-of-protein-FeZE6DAXmh
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Biomedicine, general; Biological and Medical Physics, Biophysics; Biotechnology; Biochemistry, general; Analytical Chemistry
ISSN
1053-0509
eISSN
1573-4994
D.O.I.
10.1007/s10895-018-2214-7
Publisher site
See Article on Publisher Site

Abstract

Protein rotation in viscous environments can be measured by fluorescence depletion anisotropy (FDA) which combines long lifetimes of chromophore triplet states with the sensitivity of fluorescence excitation and detection. FDA achieves sensitivity well beyond that attainable by the more common technique of time-resolved phosphorescence anisotropy (TPA). We have now combined benefits of both time-domain and frequency-domain FDA into a single continuous technique (CFDA). Intensity and polarization of a single laser beam are modulated continuously according to a complex, repeating waveform. Fluorescence signals excited from triplet-forming fluorescent probes are digitized over recurring waveform periods by a high-speed signal averager. CFDA experiments typically involve substantial ground state depletion. Thus signals, unlike those of TPA, are not linear in the exciting light intensity and simple data analysis based on such linearity is not appropriate. An exact solution of the coupled diffusion and triplet production/decay equation describing CFDA within individual data points has been combined with simulated annealing optimization to extract triplet and anisotropy decay kinetics from experimental data. Related calculations compare possible excitation waveforms with respect to rotational information provided per fluorescence photon. We present CFDA results for the model system of eosin conjugates of carbonic anhydrase, BSA and immunoglobulin G in 90% glycerol at various temperatures and initial cellular results on eosin-IgE bound to 2H3 cell Type I Fcε receptors. We explore how CFDA reflects rotational parameters of heterogeneous systems and discuss challenges of extending this method to single cell microscopic measurements.

Journal

Journal of FluorescenceSpringer Journals

Published: Feb 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off