Continuous and discontinuous Galerkin time stepping methods for nonlinear initial value problems with application to finite time blow-up

Continuous and discontinuous Galerkin time stepping methods for nonlinear initial value problems... We consider continuous and discontinuous Galerkin time stepping methods of arbitrary order as applied to first-order initial value ordinary differential equation problems in real Hilbert spaces. Our only assumption is that the nonlinearities are continuous; in particular, we include the case of unbounded nonlinear operators. Specifically, we develop new techniques to prove general Peano-type existence results for discrete solutions. In particular, our results show that the existence of solutions is independent of the local approximation order, and only requires the local time steps to be sufficiently small (independent of the polynomial degree). The uniqueness of (local) solutions is addressed as well. In addition, our theory is applied to finite time blow-up problems with nonlinearities of algebraic growth. For such problems we develop a time step selection algorithm for the purpose of numerically computing the blow-up time, and provide a convergence result. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Numerische Mathematik Springer Journals

Continuous and discontinuous Galerkin time stepping methods for nonlinear initial value problems with application to finite time blow-up

Loading next page...
 
/lp/springer_journal/continuous-and-discontinuous-galerkin-time-stepping-methods-for-1buQKGJxQg
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Deutschland
Subject
Mathematics; Numerical Analysis; Mathematics, general; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation; Mathematical and Computational Engineering
ISSN
0029-599X
eISSN
0945-3245
D.O.I.
10.1007/s00211-017-0918-2
Publisher site
See Article on Publisher Site

Abstract

We consider continuous and discontinuous Galerkin time stepping methods of arbitrary order as applied to first-order initial value ordinary differential equation problems in real Hilbert spaces. Our only assumption is that the nonlinearities are continuous; in particular, we include the case of unbounded nonlinear operators. Specifically, we develop new techniques to prove general Peano-type existence results for discrete solutions. In particular, our results show that the existence of solutions is independent of the local approximation order, and only requires the local time steps to be sufficiently small (independent of the polynomial degree). The uniqueness of (local) solutions is addressed as well. In addition, our theory is applied to finite time blow-up problems with nonlinearities of algebraic growth. For such problems we develop a time step selection algorithm for the purpose of numerically computing the blow-up time, and provide a convergence result.

Journal

Numerische MathematikSpringer Journals

Published: Oct 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off