Continuous and discontinuous contact problem of a functionally graded layer resting on a rigid foundation

Continuous and discontinuous contact problem of a functionally graded layer resting on a rigid... In this study, the continuous and discontinuous contact problem of a functionally graded (FG) layer resting on a rigid foundation is considered. The top of the FG layer is subjected to normal tractions over a finite segment. The graded layer is modeled as a non-homogenous medium with a constant Poissons’ ratio and exponentially varying shear modules and density. For continuous contact, the problem was solved analytically using plane elasticity and integral transform techniques. The critical load that causes first separation and contact pressures is investigated for various material properties and loadings. The problem reduced to a singular integral equation using plane elasticity and integral transform techniques in case of discontinuous contact. The obtained singular integral equation is solved numerically using Gauss–Jacobi integral formulation, and an iterative scheme is employed to obtain the correct separation distance. The separation distance and contact pressures between the FG layer and the foundation are analyzed for various material properties and loading. The results are shown in Tables and Figures. It is seen that decreasing stiffness and density at the top of the layer result in an increment in both critical load in case of continuous contact and separation distance in case of discontinuous contact. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mechanica Springer Journals

Continuous and discontinuous contact problem of a functionally graded layer resting on a rigid foundation

Loading next page...
 
/lp/springer_journal/continuous-and-discontinuous-contact-problem-of-a-functionally-graded-Lv9ukBWCbU
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Engineering; Theoretical and Applied Mechanics; Classical and Continuum Physics; Continuum Mechanics and Mechanics of Materials; Structural Mechanics; Vibration, Dynamical Systems, Control; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0001-5970
eISSN
1619-6937
D.O.I.
10.1007/s00707-017-1871-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial