Contact Measurements of Randomly Rough Surfaces

Contact Measurements of Randomly Rough Surfaces This manuscript presents an experimental effort to directly measure contact areas and the details behind these scaled experiments on a randomly rough model surface used in the “Contact Mechanics Challenge” (2017). For these experiments, the randomly rough surface model was scaled up by a factor of 1000× to give a 100 mm square sample that was 3D printed from opaque polymethylmethacrylate (PMMA). This sample was loaded against various optically smooth and transparent samples of PDMS that were approximately 15 mm thick and had a range in elastic modulus from 14 kPa to 2.1 MPa. During loading, a digital camera recorded contact locations by imaging the scattering of light that occurs off of the PMMA rough surface when it was in contact with the PDMS substrate. This method of illuminating contact areas is called frustrated total internal reflection and is performed by creating a condition of total internal reflection within the unperturbed PDMS samples. Contact or deformation of the surface results in light being diffusely transmitted from the PDMS and detected by the camera. For these experiments, a range of reduced pressure (nominal pressure/elastic modulus) from below 0.001 to over 1.0 was examined, and the resulting relative contact area (real area of contact/apparent area of contact) was found to increase from below 0.1% to over 60% at the highest pressures. The experimental uncertainties associated with experiments are discussed, and the results are compared to the numerical results from the simulation solution to the “Contact Mechanics Challenge.” The simulation results and experimental results of the relative contact areas as a function of reduced pressure are in agreement (within experimental uncertainties). Tribology Letters Springer Journals

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media, LLC
Materials Science; Tribology, Corrosion and Coatings; Surfaces and Interfaces, Thin Films; Theoretical and Applied Mechanics; Physical Chemistry; Nanotechnology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial