Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Construction of an organoruthenium complex (–[biphRuCp]PF6–) within a biphenylene-bridged inorganic–organic hybrid mesoporous material, and its catalytic activity in the selective hydrosilylation of 1-hexyne

Construction of an organoruthenium complex (–[biphRuCp]PF6–) within a biphenylene-bridged... An organoruthenium complex (–[biphRuCp]PF6–; biph = –(C6H4)2–, Cp = C5H5), constructed within a biphenylene-bridged inorganic–organic hybrid mesoporous material (HMM–biph) by use of a simple ligand-exchange reaction, has been used as a heterogeneous catalyst. UV–visible and X-ray absorption fine structure (XAFS) studies furnished evidence that the structure of the complex is closely similar to that of [(C6H6)RuCp]PF6, suggesting that the biphenylene moiety within HMM–biph directly coordinates the metal center of the organoruthenium complex. The –[biphRuCp]PF6– complex constructed within the HMM–biph (HMM–biphRuCp) catalyzes hydrosilylation of 1-hexyne with triethylsilane in a solid–gas heterogeneous system and gives α-vinylsilane as a main product. Moreover, HMM–biphRuCp has higher catalytic activity than the –[phRuCp]PF6– (ph = –C6H4–) complex constructed within phenylene-bridged HMM (HMM–phRuCp). The high catalytic performance of HMM–biphRuCp can be attributed to the high loading of the HMM–biph with the Ru complex, because of the electron-donating ability of the biphenylene moieties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Construction of an organoruthenium complex (–[biphRuCp]PF6–) within a biphenylene-bridged inorganic–organic hybrid mesoporous material, and its catalytic activity in the selective hydrosilylation of 1-hexyne

Loading next page...
1
 
/lp/springer_journal/construction-of-an-organoruthenium-complex-biphrucp-pf6-within-a-wPbCIK1wpe

References (31)

Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
DOI
10.1007/s11164-013-1460-1
Publisher site
See Article on Publisher Site

Abstract

An organoruthenium complex (–[biphRuCp]PF6–; biph = –(C6H4)2–, Cp = C5H5), constructed within a biphenylene-bridged inorganic–organic hybrid mesoporous material (HMM–biph) by use of a simple ligand-exchange reaction, has been used as a heterogeneous catalyst. UV–visible and X-ray absorption fine structure (XAFS) studies furnished evidence that the structure of the complex is closely similar to that of [(C6H6)RuCp]PF6, suggesting that the biphenylene moiety within HMM–biph directly coordinates the metal center of the organoruthenium complex. The –[biphRuCp]PF6– complex constructed within the HMM–biph (HMM–biphRuCp) catalyzes hydrosilylation of 1-hexyne with triethylsilane in a solid–gas heterogeneous system and gives α-vinylsilane as a main product. Moreover, HMM–biphRuCp has higher catalytic activity than the –[phRuCp]PF6– (ph = –C6H4–) complex constructed within phenylene-bridged HMM (HMM–phRuCp). The high catalytic performance of HMM–biphRuCp can be attributed to the high loading of the HMM–biph with the Ru complex, because of the electron-donating ability of the biphenylene moieties.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 30, 2013

There are no references for this article.