Construction and nonlinear optical characterization of CuO quantum dots doped Na2O–CaO–B2O3–SiO2 bulk glass

Construction and nonlinear optical characterization of CuO quantum dots doped... The spherical shape copper oxide (CuO) quantum dots (QDs) were successfully fabricated via copper basic calcium sodium borosilicate (Na2O–CaO–B2O3–SiO2) precursor obtained with a facile sol–gel technique. The microstructural analysis of doped QDs are systemically characterized, such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photo-electron spectroscopy. And the results reveal that the CuO QDs with the small size are well dispersed doped in sodium calcium borosilicate glass. Remarkably, the CuO glass materials exhibit the good third-order optical nonlinear susceptibility χ(3) (1.379 × 10−12 esu), which was investigated by femto-second Z-scan technique at the wavelength of 1550 nm, pulse duration of 50 fs, repetition rate of 50 MHz. The glass hybrids displayed a reverse saturable absorption and self-focusing refraction performance. And the mechanism to explain the third-order nonlinearity of CuO glass may be predominantly originated from the surface plasmon resonance effect, the quantum confinement effect and partly from the thermal effect. Besides, it is interesting that the glass hybrids have significant nonlinear absorption effects that endow the material to the potential value of the application of optical limiting device. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Construction and nonlinear optical characterization of CuO quantum dots doped Na2O–CaO–B2O3–SiO2 bulk glass

Loading next page...
 
/lp/springer_journal/construction-and-nonlinear-optical-characterization-of-cuo-quantum-cZi7kB80ss
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7155-4
Publisher site
See Article on Publisher Site

Abstract

The spherical shape copper oxide (CuO) quantum dots (QDs) were successfully fabricated via copper basic calcium sodium borosilicate (Na2O–CaO–B2O3–SiO2) precursor obtained with a facile sol–gel technique. The microstructural analysis of doped QDs are systemically characterized, such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photo-electron spectroscopy. And the results reveal that the CuO QDs with the small size are well dispersed doped in sodium calcium borosilicate glass. Remarkably, the CuO glass materials exhibit the good third-order optical nonlinear susceptibility χ(3) (1.379 × 10−12 esu), which was investigated by femto-second Z-scan technique at the wavelength of 1550 nm, pulse duration of 50 fs, repetition rate of 50 MHz. The glass hybrids displayed a reverse saturable absorption and self-focusing refraction performance. And the mechanism to explain the third-order nonlinearity of CuO glass may be predominantly originated from the surface plasmon resonance effect, the quantum confinement effect and partly from the thermal effect. Besides, it is interesting that the glass hybrids have significant nonlinear absorption effects that endow the material to the potential value of the application of optical limiting device.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: May 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off