Construction and nonlinear optical characterization of CuO quantum dots doped Na2O–CaO–B2O3–SiO2 bulk glass

Construction and nonlinear optical characterization of CuO quantum dots doped... The spherical shape copper oxide (CuO) quantum dots (QDs) were successfully fabricated via copper basic calcium sodium borosilicate (Na2O–CaO–B2O3–SiO2) precursor obtained with a facile sol–gel technique. The microstructural analysis of doped QDs are systemically characterized, such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photo-electron spectroscopy. And the results reveal that the CuO QDs with the small size are well dispersed doped in sodium calcium borosilicate glass. Remarkably, the CuO glass materials exhibit the good third-order optical nonlinear susceptibility χ(3) (1.379 × 10−12 esu), which was investigated by femto-second Z-scan technique at the wavelength of 1550 nm, pulse duration of 50 fs, repetition rate of 50 MHz. The glass hybrids displayed a reverse saturable absorption and self-focusing refraction performance. And the mechanism to explain the third-order nonlinearity of CuO glass may be predominantly originated from the surface plasmon resonance effect, the quantum confinement effect and partly from the thermal effect. Besides, it is interesting that the glass hybrids have significant nonlinear absorption effects that endow the material to the potential value of the application of optical limiting device. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Construction and nonlinear optical characterization of CuO quantum dots doped Na2O–CaO–B2O3–SiO2 bulk glass

Loading next page...
 
/lp/springer_journal/construction-and-nonlinear-optical-characterization-of-cuo-quantum-cZi7kB80ss
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7155-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial