Constrained and Unconstrained overspill routing in optical networks: a detailed performance evaluation

Constrained and Unconstrained overspill routing in optical networks: a detailed performance... In this article, we present a detailed performance evaluation of a hybrid optical switching (HOS) architecture called Overspill Routing in Optical Networks (ORION). The ORION architecture combines (optical) wavelength and (electronic) packet switching, so as to obtain the individual advantages of both switching paradigms. In particular, ORION exploits the possible idle periods of established lightpaths to transmit packets destined to the next common node, or even directly to their common end-destination. Depending on whether all lightpaths are allowed to simultaneously carry and terminate overspill traffic or overspill is restricted to a sub-set of wavelengths, the architecture limits itself to constrained or un-constrained ORION. To evaluate both cases, we developed an extensive network simulator where the basic features of the ORION architecture were modeled, including suitable edge/core node switches and load-varying sources to simulate overloading traffic conditions. Further, we have assessed various aspects of the ORION architecture including two basic routing/forwarding policies and various buffering schemes. The complete network study shows that ORION can absorb temporal traffic overloads, as intended, provided sufficient buffering is present. We also demonstrate that the restriction of simultaneous packet insertions/extractions, to reduce the necessary interfaces, do not deteriorate performance and thus the use of traffic concentrators assure ORION’s economic viability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Constrained and Unconstrained overspill routing in optical networks: a detailed performance evaluation

Loading next page...
 
/lp/springer_journal/constrained-and-unconstrained-overspill-routing-in-optical-networks-a-gfuIlOhjRJ
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-006-0052-z
Publisher site
See Article on Publisher Site

Abstract

In this article, we present a detailed performance evaluation of a hybrid optical switching (HOS) architecture called Overspill Routing in Optical Networks (ORION). The ORION architecture combines (optical) wavelength and (electronic) packet switching, so as to obtain the individual advantages of both switching paradigms. In particular, ORION exploits the possible idle periods of established lightpaths to transmit packets destined to the next common node, or even directly to their common end-destination. Depending on whether all lightpaths are allowed to simultaneously carry and terminate overspill traffic or overspill is restricted to a sub-set of wavelengths, the architecture limits itself to constrained or un-constrained ORION. To evaluate both cases, we developed an extensive network simulator where the basic features of the ORION architecture were modeled, including suitable edge/core node switches and load-varying sources to simulate overloading traffic conditions. Further, we have assessed various aspects of the ORION architecture including two basic routing/forwarding policies and various buffering schemes. The complete network study shows that ORION can absorb temporal traffic overloads, as intended, provided sufficient buffering is present. We also demonstrate that the restriction of simultaneous packet insertions/extractions, to reduce the necessary interfaces, do not deteriorate performance and thus the use of traffic concentrators assure ORION’s economic viability.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Dec 9, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off