Constitutive and cold-induced resistance of rye and wheat seedlings to oxidative stress

Constitutive and cold-induced resistance of rye and wheat seedlings to oxidative stress The influence of cold hardening of rye (Secale cereale L.) and wheat (Triticum aestivum L.) seedlings on their resistance to the oxidative stress (OS) agents, namely, 50 mM hydrogen peroxide or 5 mM iron (II) sulfate was studied. Unhardened rye seedlings were more resistant to hydrogen peroxide than those of wheat, since their growth was less inhibited, and they accumulated lesser amounts of lipid peroxidation products after a treatment with H2O2. The interspecific differences in responses to FeSO4 were less significant. The unhardened seedlings of rye, in comparison with those of wheat, possessed more active guaiacol peroxidase (GPO) and more levels of anthocyanins and proline. In response to the OS agents, the unhardened rye seedlings enhanced activities of superoxide dismutase and catalase, whereas the wheat seedlings enhanced GPO activity and proline content. The cold hardening (6 days at 2°C) increased activities of antioxidant (AO) enzymes, contents of proline, sugars, and anthocyanins in seedlings of both species, and made the seedlings more resistant to the OS agents. After the cold hardening, rye seedlings were more resistant to OS than wheat seedlings. The hardened seedlings of both species activated the AO enzymes in response to H2O2 or FeSO4 greater than the unhardened ones. However, the hardened wheat seedlings, in contrast to the unhardened ones, did not augment the proline content in contact with the OS agents. The conclusion was drawn on different contributions of AO enzymes and low-molecular weight compounds to the basal and induced by the cold—hardening resistances of rye and wheat seedlings to OS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Constitutive and cold-induced resistance of rye and wheat seedlings to oxidative stress

Loading next page...
 
/lp/springer_journal/constitutive-and-cold-induced-resistance-of-rye-and-wheat-seedlings-to-stD2zPqon0
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716030067
Publisher site
See Article on Publisher Site

Abstract

The influence of cold hardening of rye (Secale cereale L.) and wheat (Triticum aestivum L.) seedlings on their resistance to the oxidative stress (OS) agents, namely, 50 mM hydrogen peroxide or 5 mM iron (II) sulfate was studied. Unhardened rye seedlings were more resistant to hydrogen peroxide than those of wheat, since their growth was less inhibited, and they accumulated lesser amounts of lipid peroxidation products after a treatment with H2O2. The interspecific differences in responses to FeSO4 were less significant. The unhardened seedlings of rye, in comparison with those of wheat, possessed more active guaiacol peroxidase (GPO) and more levels of anthocyanins and proline. In response to the OS agents, the unhardened rye seedlings enhanced activities of superoxide dismutase and catalase, whereas the wheat seedlings enhanced GPO activity and proline content. The cold hardening (6 days at 2°C) increased activities of antioxidant (AO) enzymes, contents of proline, sugars, and anthocyanins in seedlings of both species, and made the seedlings more resistant to the OS agents. After the cold hardening, rye seedlings were more resistant to OS than wheat seedlings. The hardened seedlings of both species activated the AO enzymes in response to H2O2 or FeSO4 greater than the unhardened ones. However, the hardened wheat seedlings, in contrast to the unhardened ones, did not augment the proline content in contact with the OS agents. The conclusion was drawn on different contributions of AO enzymes and low-molecular weight compounds to the basal and induced by the cold—hardening resistances of rye and wheat seedlings to OS.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 13, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off