Consistency anomalies in multi-tier architectures: automatic detection and prevention

Consistency anomalies in multi-tier architectures: automatic detection and prevention Modern transaction systems, consisting of an application server tier and a database tier, offer several levels of isolation providing a trade-off between performance and consistency. While it is fairly well known how to identify qualitatively the anomalies that are possible under a certain isolation level, it is much more difficult to detect and quantify such anomalies during run-time of a given application. In this paper, we present a new approach to detect and quantify consistency anomalies for arbitrary multi-tier application running under any isolation levels ensuring at least read committed. In fact, the application can run even under a mixture of isolation levels. Our detection approach can be online or off-line and for each detected anomaly, we identify exactly the transactions and data items involved. Furthermore, we classify the detected anomalies into patterns showing the business methods involved as well as analyzing the types of cycles that occur. Our approach can help designers to either choose an isolation level where the anomalies do not occur or to change the transaction design to avoid the anomalies. Furthermore, we provide an option in which the occurrence of anomalies can be automatically reduced during run-time. To test the effectiveness and efficiency of our approach, we have conducted a set of experiments using a wide range of benchmarks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Consistency anomalies in multi-tier architectures: automatic detection and prevention

Loading next page...
 
/lp/springer_journal/consistency-anomalies-in-multi-tier-architectures-automatic-detection-Q02AwG1lo0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-013-0318-x
Publisher site
See Article on Publisher Site

Abstract

Modern transaction systems, consisting of an application server tier and a database tier, offer several levels of isolation providing a trade-off between performance and consistency. While it is fairly well known how to identify qualitatively the anomalies that are possible under a certain isolation level, it is much more difficult to detect and quantify such anomalies during run-time of a given application. In this paper, we present a new approach to detect and quantify consistency anomalies for arbitrary multi-tier application running under any isolation levels ensuring at least read committed. In fact, the application can run even under a mixture of isolation levels. Our detection approach can be online or off-line and for each detected anomaly, we identify exactly the transactions and data items involved. Furthermore, we classify the detected anomalies into patterns showing the business methods involved as well as analyzing the types of cycles that occur. Our approach can help designers to either choose an isolation level where the anomalies do not occur or to change the transaction design to avoid the anomalies. Furthermore, we provide an option in which the occurrence of anomalies can be automatically reduced during run-time. To test the effectiveness and efficiency of our approach, we have conducted a set of experiments using a wide range of benchmarks.

Journal

The VLDB JournalSpringer Journals

Published: Jun 4, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off