Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases

Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases Plant S-adenosyl-L-methionine-dependent methyltransferases (SAM-Mtases) are the key enzymes in phenylpropanoid, flavonoid and many other metabolic pathways of biotechnological importance. Here we compiled the amino acid sequences of 56 SAM-Mtases from different plants and performed a computer analysis for the conserved sequence motifs that could possibly act as SAM-binding domains. To date, genes or cDNAs encoding at least ten distinct groups of SAM-Mtases that utilize SAM and a variety of substrates have been reported from higher plants. Three amino acid sequence motifs are conserved in most of these SAM-Mtases. In addition, many conserved domains have been discovered in each group of O-methyltransferases (OMTs) that methylate specific substrates and may act as sites for substrate specificity in each enzyme. Finally, a diagrammatic representation of the relationship between different OMTs is presented. These SAM-Mtase sequence signatures will be useful in the identification of SAM-Mtase motifs in the hitherto unidentified proteins as well as for designing primers in the isolation of new SAM-Mtases from plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases

Loading next page...
 
/lp/springer_journal/conserved-sequence-motifs-in-plant-s-adenosyl-l-methionine-dependent-9hdG6YlgOJ
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006035210889
Publisher site
See Article on Publisher Site

Abstract

Plant S-adenosyl-L-methionine-dependent methyltransferases (SAM-Mtases) are the key enzymes in phenylpropanoid, flavonoid and many other metabolic pathways of biotechnological importance. Here we compiled the amino acid sequences of 56 SAM-Mtases from different plants and performed a computer analysis for the conserved sequence motifs that could possibly act as SAM-binding domains. To date, genes or cDNAs encoding at least ten distinct groups of SAM-Mtases that utilize SAM and a variety of substrates have been reported from higher plants. Three amino acid sequence motifs are conserved in most of these SAM-Mtases. In addition, many conserved domains have been discovered in each group of O-methyltransferases (OMTs) that methylate specific substrates and may act as sites for substrate specificity in each enzyme. Finally, a diagrammatic representation of the relationship between different OMTs is presented. These SAM-Mtase sequence signatures will be useful in the identification of SAM-Mtase motifs in the hitherto unidentified proteins as well as for designing primers in the isolation of new SAM-Mtases from plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off