Conserved arginine residues in the carboxyl terminus of the equine arteritis virus E protein may play a role in heparin binding but may not affect viral infectivity in equine endothelial cells

Conserved arginine residues in the carboxyl terminus of the equine arteritis virus E protein may... Equine arteritis virus (EAV), the causative agent of equine viral arteritis, has relatively broad cell tropism in vitro . In horses, EAV primarily replicates in macrophages and endothelial cells of small blood vessels. Until now, neither the cellular receptor(s) nor the mechanism(s) of virus attachment and entry have been determined for this virus. In this study, we investigated the effect of heparin on EAV infection in equine endothelial cells (EECs). Heparin, but not other glycosaminoglycans, could reduce EAV infection up to 93 %. Sequence analysis of the EAV E minor envelope protein revealed a conserved amino acid sequence ( 52 R SLVA R CS R GA R Y R 65 ) at the carboxy terminus of the E protein, which was predicted to be the heparin-binding domain. The basic arginine (R) amino acid residues were subsequently mutated to glycine by site-directed mutagenesis of ORF2a in an E protein expression vector and an infectious cDNA clone of EAV. Two single mutations in E (R52G and R57G) did not affect the heparin-binding capability, whereas the E double mutation (R52,60G) completely eliminated the interaction between the E protein and heparin. Although the mutant R52,60G EAV did not bind heparin, the mutations did not completely abolish infectivity, indicating that heparin is not the only critical factor for EAV infection. This also suggested that other viral envelope protein(s) might be involved in attachment through heparin or other cell-surface molecules, and this warrants further investigation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Conserved arginine residues in the carboxyl terminus of the equine arteritis virus E protein may play a role in heparin binding but may not affect viral infectivity in equine endothelial cells

Loading next page...
 
/lp/springer_journal/conserved-arginine-residues-in-the-carboxyl-terminus-of-the-equine-hRNYv0FE9M
Publisher
Springer Vienna
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-015-2733-3
Publisher site
See Article on Publisher Site

Abstract

Equine arteritis virus (EAV), the causative agent of equine viral arteritis, has relatively broad cell tropism in vitro . In horses, EAV primarily replicates in macrophages and endothelial cells of small blood vessels. Until now, neither the cellular receptor(s) nor the mechanism(s) of virus attachment and entry have been determined for this virus. In this study, we investigated the effect of heparin on EAV infection in equine endothelial cells (EECs). Heparin, but not other glycosaminoglycans, could reduce EAV infection up to 93 %. Sequence analysis of the EAV E minor envelope protein revealed a conserved amino acid sequence ( 52 R SLVA R CS R GA R Y R 65 ) at the carboxy terminus of the E protein, which was predicted to be the heparin-binding domain. The basic arginine (R) amino acid residues were subsequently mutated to glycine by site-directed mutagenesis of ORF2a in an E protein expression vector and an infectious cDNA clone of EAV. Two single mutations in E (R52G and R57G) did not affect the heparin-binding capability, whereas the E double mutation (R52,60G) completely eliminated the interaction between the E protein and heparin. Although the mutant R52,60G EAV did not bind heparin, the mutations did not completely abolish infectivity, indicating that heparin is not the only critical factor for EAV infection. This also suggested that other viral envelope protein(s) might be involved in attachment through heparin or other cell-surface molecules, and this warrants further investigation.

Journal

Archives of VirologySpringer Journals

Published: Apr 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off