Conservation of the Caenorhabditis elegans timing gene clk-1 from yeast to human: a gene required for ubiquinone biosynthesis with potential implications for aging

Conservation of the Caenorhabditis elegans timing gene clk-1 from yeast to human: a gene required... Mutations in the Caenorhabditis elegans gene clk-1 have a major effect on slowing development and increasing life span. The Saccharomyces cerevisiae homolog COQ7 encodes a mitochondrial protein involved in ubiquinone biosynthesis and, hence, is required for respiration and gluconeogenesis. In this study, RT-PCR and 5′ RACE were used to isolate both human and mouse clk-1/COQ7 homologs. Human CLK-1 was mapped to Chr 16(p12–13.1) by Radiation Hybrid (RH) and fluorescence in situ hybridization (FISH) methods. The number and location of human CLK1 introns were determined, and the location of introns II and IV are the same as in C. elegans. Northern blot analysis showed that three different isoforms of CLK-1 mRNA are present in several tissues and that the isoforms differ in the amount of expression. The functional equivalence of human CLK-1 to the yeast COQ7 homolog was tested by introducing either a single or multicopy plasmid containing human CLK-1 cDNA into yeast coq7 deletion strains and assaying for growth on a nonfermentable carbon source. The human CLK-1 gene was able to functionally complement yeast coq7 deletion mutants. The protein similarities and the conservation of function of the CLK-1/clk-1/COQ7 gene products suggest a potential link between the production of ubiquinone and aging. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Conservation of the Caenorhabditis elegans timing gene clk-1 from yeast to human: a gene required for ubiquinone biosynthesis with potential implications for aging

Loading next page...
 
/lp/springer_journal/conservation-of-the-caenorhabditis-elegans-timing-gene-clk-1-from-ky9ujXS0Lm
Publisher
Springer-Verlag
Copyright
Copyright © 1999 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359901147
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial