Conservation laws, soliton solutions for modified Camassa–Holm equation and (2+1)-dimensional ZK–BBM equation

Conservation laws, soliton solutions for modified Camassa–Holm equation and (2+1)-dimensional... By using the multiplier approach, we construct the conservation laws and the corresponding conserved quantities for the modified Camassa–Holm equation and (2 + 1)-dimensional Zakharov–Kuznetsov–Benjamin–Bona–Mahoney equation for each multipliers. We also deduce the soliton solutions for the equations using semi-inverse variational principle. We give the discussion of the properties of the soliton waves obtained numerically via some figures and the physical interpretation to complete these studies. Finally, we compare the solutions obtained with other solutions obtained in previous papers to prove that the results in this paper cannot appear anywhere. Nonlinear Dynamics Springer Journals

Conservation laws, soliton solutions for modified Camassa–Holm equation and (2+1)-dimensional ZK–BBM equation

Loading next page...
Springer Netherlands
Copyright © 2017 by Springer Science+Business Media B.V.
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial