Conformational control of oxidation sites, spin states and orbital occupancy in nickel porphyrins

Conformational control of oxidation sites, spin states and orbital occupancy in nickel porphyrins Ni(II) porphyrin π cation radicals are known to undergo an internal electronic isomerization to L2Ni(III) cations upon complexation with ligands (L). Additional examples of the Ni(II) to Ni(III) conversion are presented for flexible, 'planar' NiOEP (2,3,7,8,12,13,17,18-octaethylporphyrin) and NiT(Pr)P (5,10,15,20-tetra-n-propylporphyrin) in which the Ni(III) orbital occupancy, d z2 or d x2-y2, is determined by the ligand field strength of the axial ligands (pyridine, imidazole, or cyanide). In contrast to these results, the nonplanar NiOETPP (2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin), which is easily oxidized because of its saddle-shape, yields a complex postulated to be a high spin Ni(II) π cation radical, based on crystallographic and optical data for (imidazole)2NiOETPP+ClO4-, in which the electron of high spin Ni(II) in the d x2-y2 orbital is antiferromagnetically coupled to the unpaired electron of the porphyrin radical leaving one electron in the Ni(II) d z2 orbital, i.e. a pseudo Ni(III). The sterically encumbered, nonplanar NiT(t-Bu)P (5,10,15,20-tetra-tertiary-butylporphyrin) yields Ni(III) complexes when ligated by pyridine, imidazole or cyanide, but in all cases only the Ni(III) d z2 orbital is occupied as evidenced by EPR spectroscopy. This anomalous chemistry is attributed to the fact that the macrocycle of NiT(t-Bu)P is so sterically constrained that it cannot readily expand to accommodate the longer equatorial Ni—N distances required by population of the d x2-y2 orbital in Ni(III) or high spin Ni(II). Further support for this postulate derives from NiD(t-Bu)P (5,10-di-tertiary-butylporphyrin) which is less sterically constrained and in which the Ni(III) d x2-y2 orbital is indeed occupied upon complexation with cyanide. These results thus illustrate the significant effects that the conformations, plasticity or rigidity of Ni porphyrin macrocycles can have on sites of oxidation (metal or porphyrin), spin states (low spin Ni(III) or high spin Ni(II)), and orbital occupancies (d z2 or d x2-y2 in Ni(III)). Research on Chemical Intermediates Springer Journals

Conformational control of oxidation sites, spin states and orbital occupancy in nickel porphyrins

Loading next page...
Brill Academic Publishers
Copyright © 2002 by VSP 2002
Chemistry; Inorganic Chemistry; Physical Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial