Confinement of generated terahertz waves between two metal surfaces by a nanowaveguide

Confinement of generated terahertz waves between two metal surfaces by a nanowaveguide In this study, a new nanowaveguide is designed and modeled. Light confinement by the nanowaveguide generates a 1-terahertz (THz) wave with narrow bandwidth. A difference-frequency generation (DFG) technique based on the nonlinear property of a gallium arsenide crystal is used in the model for generation of the THz wave. All calculations are based on the method of finite difference time domain. The feasible conditions of phase matching are evaluated, and the structural parameters of the nanowaveguide are optimized. It was found that the simultaneous use of two parallel plasmonic surfaces in the structure improves THz output power of the nanowaveguide in comparison with that of other similar waveguides. The nanowaveguide output power is several times larger than the output power of the other waveguides based on DFG technique in all scales. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Computational Electronics Springer Journals

Confinement of generated terahertz waves between two metal surfaces by a nanowaveguide

Loading next page...
 
/lp/springer_journal/confinement-of-generated-terahertz-waves-between-two-metal-surfaces-by-HmVc3uwE91
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Mathematical and Computational Engineering; Electrical Engineering; Theoretical, Mathematical and Computational Physics; Optical and Electronic Materials; Mechanical Engineering
ISSN
1569-8025
eISSN
1572-8137
D.O.I.
10.1007/s10825-017-1111-7
Publisher site
See Article on Publisher Site

Abstract

In this study, a new nanowaveguide is designed and modeled. Light confinement by the nanowaveguide generates a 1-terahertz (THz) wave with narrow bandwidth. A difference-frequency generation (DFG) technique based on the nonlinear property of a gallium arsenide crystal is used in the model for generation of the THz wave. All calculations are based on the method of finite difference time domain. The feasible conditions of phase matching are evaluated, and the structural parameters of the nanowaveguide are optimized. It was found that the simultaneous use of two parallel plasmonic surfaces in the structure improves THz output power of the nanowaveguide in comparison with that of other similar waveguides. The nanowaveguide output power is several times larger than the output power of the other waveguides based on DFG technique in all scales.

Journal

Journal of Computational ElectronicsSpringer Journals

Published: Nov 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off