Confinement of generated terahertz waves between two metal surfaces by a nanowaveguide

Confinement of generated terahertz waves between two metal surfaces by a nanowaveguide In this study, a new nanowaveguide is designed and modeled. Light confinement by the nanowaveguide generates a 1-terahertz (THz) wave with narrow bandwidth. A difference-frequency generation (DFG) technique based on the nonlinear property of a gallium arsenide crystal is used in the model for generation of the THz wave. All calculations are based on the method of finite difference time domain. The feasible conditions of phase matching are evaluated, and the structural parameters of the nanowaveguide are optimized. It was found that the simultaneous use of two parallel plasmonic surfaces in the structure improves THz output power of the nanowaveguide in comparison with that of other similar waveguides. The nanowaveguide output power is several times larger than the output power of the other waveguides based on DFG technique in all scales. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Computational Electronics Springer Journals

Confinement of generated terahertz waves between two metal surfaces by a nanowaveguide

Loading next page...
 
/lp/springer_journal/confinement-of-generated-terahertz-waves-between-two-metal-surfaces-by-HmVc3uwE91
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Mathematical and Computational Engineering; Electrical Engineering; Theoretical, Mathematical and Computational Physics; Optical and Electronic Materials; Mechanical Engineering
ISSN
1569-8025
eISSN
1572-8137
D.O.I.
10.1007/s10825-017-1111-7
Publisher site
See Article on Publisher Site

Abstract

In this study, a new nanowaveguide is designed and modeled. Light confinement by the nanowaveguide generates a 1-terahertz (THz) wave with narrow bandwidth. A difference-frequency generation (DFG) technique based on the nonlinear property of a gallium arsenide crystal is used in the model for generation of the THz wave. All calculations are based on the method of finite difference time domain. The feasible conditions of phase matching are evaluated, and the structural parameters of the nanowaveguide are optimized. It was found that the simultaneous use of two parallel plasmonic surfaces in the structure improves THz output power of the nanowaveguide in comparison with that of other similar waveguides. The nanowaveguide output power is several times larger than the output power of the other waveguides based on DFG technique in all scales.

Journal

Journal of Computational ElectronicsSpringer Journals

Published: Nov 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off