Conditional phase shift for quantum CCNOT operation

Conditional phase shift for quantum CCNOT operation We suggest the improvement of description methods for quantum phase gate implementation based on cavity QED. Qubits are encoded into two lowest Fock states. Three qubit phase transformation is resulted from the interaction between Rydberg atom and three modes of cavity electromagnetic field. Evolution of conditional field states after atom measurement is described by Kraus operators. We show that one of these operators corresponds to conditional evolution without quantum jumps and is very convenient for phase gate implementation. Also we describe cavity based generating EPR pair from certain initially disentangled state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Conditional phase shift for quantum CCNOT operation

Loading next page...
 
/lp/springer_journal/conditional-phase-shift-for-quantum-ccnot-operation-KhO5dwKWkS
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0340-0
Publisher site
See Article on Publisher Site

Abstract

We suggest the improvement of description methods for quantum phase gate implementation based on cavity QED. Qubits are encoded into two lowest Fock states. Three qubit phase transformation is resulted from the interaction between Rydberg atom and three modes of cavity electromagnetic field. Evolution of conditional field states after atom measurement is described by Kraus operators. We show that one of these operators corresponds to conditional evolution without quantum jumps and is very convenient for phase gate implementation. Also we describe cavity based generating EPR pair from certain initially disentangled state.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 1, 2011

References

  • Quantum information
    Kilin, S.Ya.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off