Concurrency control and recovery for balanced B-link trees

Concurrency control and recovery for balanced B-link trees In this paper we present new concurrent and recoverable B-link-tree algorithms. Unlike previous algorithms, ours maintain the balance of the B-link tree at all times, so that a logarithmic time bound for a search or an update operation is guaranteed under arbitrary sequences of record insertions and deletions. A database transaction can contain any number of operations of the form “fetch the first (or next) matching record”, “insert a record”, or “delete a record”, where database records are identified by their primary keys. Repeatable-read-level isolation for transactions is guaranteed by key-range locking. The algorithms apply the write-ahead logging (WAL) protocol and the steal and no-force buffering policies for index and data pages. Record inserts and deletes on leaf pages of a B-link tree are logged using physiological redo-undo log records. Each structure modification such as a page split or merge is made an atomic action by keeping the pages involved in the modification latched for the (short) duration of the modification and the logging of that modification; at most two B-link-tree pages are kept X -latched at a time. Each structure modification brings the B-link tree into a structurally consistent and balanced state whenever the tree was structurally consistent and balanced initially. Each structure modification is logged using a single physiological redo-only log record. Thus, a structure modification will never be undone even if the transaction that gave rise to it eventually aborts. In restart recovery, the redo pass of our ARIES-based recovery protocol will always produce a structurally consistent and balanced B-link tree, on which the database updates by backward-rolling transactions can always be undone logically, when a physical (page-oriented) undo is no longer possible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Concurrency control and recovery for balanced B-link trees

Loading next page...
 
/lp/springer_journal/concurrency-control-and-recovery-for-balanced-b-link-trees-Gk4XcoOENa
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-004-0140-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial