Concentration Theorems for Entropy and Free Energy

Concentration Theorems for Entropy and Free Energy Jaynes’s entropy concentration theorem states that, for most words ω1 ...ωN of length N such that $$\mathop \Sigma \limits_{i = 1}^{\rm N} \;f(\omega _i ) \approx vN$$ , empirical frequencies of values of a function f are close to the probabilities that maximize the Shannon entropy given a value v of the mathematical expectation of f. Using the notion of algorithmic entropy, we define the notions of entropy for the Bose and Fermi statistical models of unordered data. New variants of Jaynes’s concentration theorem for these models are proved. We also present some concentration properties for free energy in the case of a nonisolated isothermal system. Exact relations for the algorithmic entropy and free energy at extreme points are obtained. These relations are used to obtain tight bounds on uctuations of energy levels at equilibrium points. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Concentration Theorems for Entropy and Free Energy

Loading next page...
 
/lp/springer_journal/concentration-theorems-for-entropy-and-free-energy-jkyaZiRQ8s
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1007/s11122-005-0019-1
Publisher site
See Article on Publisher Site

Abstract

Jaynes’s entropy concentration theorem states that, for most words ω1 ...ωN of length N such that $$\mathop \Sigma \limits_{i = 1}^{\rm N} \;f(\omega _i ) \approx vN$$ , empirical frequencies of values of a function f are close to the probabilities that maximize the Shannon entropy given a value v of the mathematical expectation of f. Using the notion of algorithmic entropy, we define the notions of entropy for the Bose and Fermi statistical models of unordered data. New variants of Jaynes’s concentration theorem for these models are proved. We also present some concentration properties for free energy in the case of a nonisolated isothermal system. Exact relations for the algorithmic entropy and free energy at extreme points are obtained. These relations are used to obtain tight bounds on uctuations of energy levels at equilibrium points.

Journal

Problems of Information TransmissionSpringer Journals

Published: Jul 15, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off