Concentration effects of the UV filter oxybenzone in Cyperus alternifolius: assessment of tolerance by stress-related response

Concentration effects of the UV filter oxybenzone in Cyperus alternifolius: assessment of... Phytoremediation has been proposed to reduce the load of the sunscreen oxybenzone (OBZ) in the aquatic environment. Despite the proven removal efficiency of this compound, little is known about its influence, particularly oxidative stress on plants. In this study, a short-term incubation of macrophytic Cyperus alternifolius was performed to prove the plant’s ability to withstand the stress. Detached shoots were immersed in medium spiked with different concentrations of OBZ (50, 100, and 500 μM) for 2, 4, and 7 days, respectively. Increased formation of O2 − and H2O2 in Cyperus treated with OBZ was characterized by intense colorization following histochemical staining. Alterations of enzyme activities involved in the antioxidative defense system indicate an adaptive response of C. alternifolius to this xenobiotic stress. Quantification of lipid peroxidation reveals that no significant membrane damage occurred during incubation with OBZ. Overall, 50 μM OBZ (tenfold higher than the amount frequently detected in the environment) exhibited low toxic effects. Accordingly, this pilot study provides information on the potential use of Cyperus to remove emerging sunscreen contaminants from water bodies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Concentration effects of the UV filter oxybenzone in Cyperus alternifolius: assessment of tolerance by stress-related response

Loading next page...
 
/lp/springer_journal/concentration-effects-of-the-uv-filter-oxybenzone-in-cyperus-ohwlwXcXsS
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1839-z
Publisher site
See Article on Publisher Site

Abstract

Phytoremediation has been proposed to reduce the load of the sunscreen oxybenzone (OBZ) in the aquatic environment. Despite the proven removal efficiency of this compound, little is known about its influence, particularly oxidative stress on plants. In this study, a short-term incubation of macrophytic Cyperus alternifolius was performed to prove the plant’s ability to withstand the stress. Detached shoots were immersed in medium spiked with different concentrations of OBZ (50, 100, and 500 μM) for 2, 4, and 7 days, respectively. Increased formation of O2 − and H2O2 in Cyperus treated with OBZ was characterized by intense colorization following histochemical staining. Alterations of enzyme activities involved in the antioxidative defense system indicate an adaptive response of C. alternifolius to this xenobiotic stress. Quantification of lipid peroxidation reveals that no significant membrane damage occurred during incubation with OBZ. Overall, 50 μM OBZ (tenfold higher than the amount frequently detected in the environment) exhibited low toxic effects. Accordingly, this pilot study provides information on the potential use of Cyperus to remove emerging sunscreen contaminants from water bodies.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off