Computing blocking probabilities in survivable WDM optical networks

Computing blocking probabilities in survivable WDM optical networks One of the most important performance measurements in wavelength-division multiplexing (WDM) networks is the call blocking probability. In this paper, we present an approximate analytical method to evaluate the blocking probabilities in survivable WDM networks with dynamically arriving connection requests. Our approach utilizes the wavelength independence whereby WDM network can be regarded as an aggregation of disjoint single wavelength sub-networks with a common physical topology. In each single wavelength sub-network, we derive the calculation of the blocking probability from an exact analysis. We assume dedicated protection with fixed routing and either first-fit or random wavelength assignment. Simulation results demonstrate the accuracy of the proposed method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Computing blocking probabilities in survivable WDM optical networks

Loading next page...
 
/lp/springer_journal/computing-blocking-probabilities-in-survivable-wdm-optical-networks-z15FV1lyXx
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-013-0423-1
Publisher site
See Article on Publisher Site

Abstract

One of the most important performance measurements in wavelength-division multiplexing (WDM) networks is the call blocking probability. In this paper, we present an approximate analytical method to evaluate the blocking probabilities in survivable WDM networks with dynamically arriving connection requests. Our approach utilizes the wavelength independence whereby WDM network can be regarded as an aggregation of disjoint single wavelength sub-networks with a common physical topology. In each single wavelength sub-network, we derive the calculation of the blocking probability from an exact analysis. We assume dedicated protection with fixed routing and either first-fit or random wavelength assignment. Simulation results demonstrate the accuracy of the proposed method.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Nov 29, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off