Computerized Prediction of Radiological Observations Based on Quantitative Feature Analysis: Initial Experience in Liver Lesions

Computerized Prediction of Radiological Observations Based on Quantitative Feature Analysis:... We propose a computerized framework that, given a region of interest (ROI) circumscribing a lesion, not only predicts radiological observations related to the lesion characteristics with 83.2% average prediction accuracy but also derives explicit association between low-level imaging features and high-level semantic terms by exploiting their statistical correlation. Such direct association between semantic concepts and low-level imaging features can be leveraged to build a powerful annotation system for radiological images that not only allows the computer to infer the semantics from diverse medical images and run automatic reasoning for making diagnostic decision but also provides “human-interpretable explanation” of the system output to facilitate better end user understanding of computer-based diagnostic decisions. The core component of our framework is a radiological observation detection algorithm that maximizes the low-level imaging feature relevancy for each high-level semantic term. On a liver lesion CT dataset, we have implemented our framework by incorporating a large set of state-of-the-art low-level imaging features. Additionally, we included a novel feature that quantifies lesion(s) present within the liver that have a similar appearance as the primary lesion identified by the radiologist. Our framework achieved a high prediction accuracy (83.2%), and the derived association between semantic concepts and imaging features closely correlates with human expectation. The framework has been only tested on liver lesion CT images, but it is capable of being applied to other imaging domains. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Digital Imaging Springer Journals

Computerized Prediction of Radiological Observations Based on Quantitative Feature Analysis: Initial Experience in Liver Lesions

Loading next page...
 
/lp/springer_journal/computerized-prediction-of-radiological-observations-based-on-qYKblmQvku
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s)
Subject
Medicine & Public Health; Imaging / Radiology
ISSN
0897-1889
eISSN
1618-727X
D.O.I.
10.1007/s10278-017-9987-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial