Computed tomographic X-ray velocimetry for simultaneous 3D measurement of velocity and geometry in opaque vessels

Computed tomographic X-ray velocimetry for simultaneous 3D measurement of velocity and geometry... Computed tomographic X-ray velocimetry has been developed for simultaneous three-dimensional measurement of flow and vessel geometry. The technique uses cross-correlation functions calculated from X-ray projection image pairs acquired at multiple viewing angles to tomographically reconstruct the flow through opaque objects with high resolution. The reconstruction is performed using an iterative, least squares approach. The simultaneous measurement of the object’s structure is performed with a limited projection tomography method. An extensive parametric study using Monte Carlo simulation reveals accurate measurements with as few as 3 projection angles, and a minimum required scan angle of only 30°. When using a single/source detector system, the technique is limited to measurement of periodic or steady flow fields; however, with the use of a multiple source/detector system, instantaneous measurement will be possible. Synchrotron experiments are conducted to demonstrate the simultaneous measurement of structure and flow in a complex geometry with strong three-dimensionality. The technique will find applications in biological flow measurement, and also in engineering applications where optical access is limited, such as in mineral processing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Computed tomographic X-ray velocimetry for simultaneous 3D measurement of velocity and geometry in opaque vessels

Loading next page...
 
/lp/springer_journal/computed-tomographic-x-ray-velocimetry-for-simultaneous-3d-measurement-BhjAkim8s0
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-1006-x
Publisher site
See Article on Publisher Site

Abstract

Computed tomographic X-ray velocimetry has been developed for simultaneous three-dimensional measurement of flow and vessel geometry. The technique uses cross-correlation functions calculated from X-ray projection image pairs acquired at multiple viewing angles to tomographically reconstruct the flow through opaque objects with high resolution. The reconstruction is performed using an iterative, least squares approach. The simultaneous measurement of the object’s structure is performed with a limited projection tomography method. An extensive parametric study using Monte Carlo simulation reveals accurate measurements with as few as 3 projection angles, and a minimum required scan angle of only 30°. When using a single/source detector system, the technique is limited to measurement of periodic or steady flow fields; however, with the use of a multiple source/detector system, instantaneous measurement will be possible. Synchrotron experiments are conducted to demonstrate the simultaneous measurement of structure and flow in a complex geometry with strong three-dimensionality. The technique will find applications in biological flow measurement, and also in engineering applications where optical access is limited, such as in mineral processing.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 25, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off