Computational tools for comparative phenomics: the role and promise of ontologies

Computational tools for comparative phenomics: the role and promise of ontologies A major aim of the biological sciences is to gain an understanding of human physiology and disease. One important step towards such a goal is the discovery of the function of genes that will lead to a better understanding of the physiology and pathophysiology of organisms, which will ultimately lead to better diagnosis and therapy. Our increasing ability to phenotypically characterise genetic variants of model organisms coupled with systematic and hypothesis-driven mutagenesis is resulting in a wealth of information that could potentially provide insight into the functions of all genes in an organism. The challenge we are now facing is to develop computational methods that can integrate and analyse such data. The introduction of formal ontologies that make their semantics explicit and accessible to automated reasoning provides the tantalizing possibility of standardizing biomedical knowledge allowing for novel, powerful queries that bridge multiple domains, disciplines, species, and levels of granularity. We review recent computational approaches that facilitate the integration of experimental data from model organisms with clinical observations in humans. These methods foster novel cross-species analysis approaches, thereby enabling comparative phenomics and leading to the potential of translating basic discoveries from the model systems into diagnostic and therapeutic advances at the clinical level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Computational tools for comparative phenomics: the role and promise of ontologies

Loading next page...
 
/lp/springer_journal/computational-tools-for-comparative-phenomics-the-role-and-promise-of-4lH3C65Q4R
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology; Cell Biology; Anatomy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-012-9404-4
Publisher site
See Article on Publisher Site

Abstract

A major aim of the biological sciences is to gain an understanding of human physiology and disease. One important step towards such a goal is the discovery of the function of genes that will lead to a better understanding of the physiology and pathophysiology of organisms, which will ultimately lead to better diagnosis and therapy. Our increasing ability to phenotypically characterise genetic variants of model organisms coupled with systematic and hypothesis-driven mutagenesis is resulting in a wealth of information that could potentially provide insight into the functions of all genes in an organism. The challenge we are now facing is to develop computational methods that can integrate and analyse such data. The introduction of formal ontologies that make their semantics explicit and accessible to automated reasoning provides the tantalizing possibility of standardizing biomedical knowledge allowing for novel, powerful queries that bridge multiple domains, disciplines, species, and levels of granularity. We review recent computational approaches that facilitate the integration of experimental data from model organisms with clinical observations in humans. These methods foster novel cross-species analysis approaches, thereby enabling comparative phenomics and leading to the potential of translating basic discoveries from the model systems into diagnostic and therapeutic advances at the clinical level.

Journal

Mammalian GenomeSpringer Journals

Published: Jul 20, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off