Computational predicting novel MicroRNAs in tomato and validating with RT-PCR

Computational predicting novel MicroRNAs in tomato and validating with RT-PCR MicroRNAs (miRNAs) are a newly discovered class of nonprotein-coding small RNAs with the length of ∼21 nucleotides that regulate gene post-transcriptional expression in animals and plants. By far, the researches have indicated that miRNAs may play multiple roles in plant growth and development. It is difficult to identify some miRNAs by experimental methods because of their low expressional levels and tissue specificity, while bioinformatics is an effective strategy in the prediction of this kind of miRNAs. In this study, we presented an approach of expressed sequence tag (EST) analysis for predicting novel miRNAs as well as their targets in tomato (Lycopersicon esculentum). The database of tomato ESTs was compared with previously known miRNA sequences of other plants using BLAST to search for potential miRNAs. Eight potential miRNAs were found following a range of filtering criteria, including stem-loop structure, mismatches, the content of A + U, minimal folding free energy indices, and others with subsequent validated by touchdown RT-PCR assay in fruit tissue. Three unknown miRNAs, LemiR157a, LemiR172i, and LemiR399, which were not reported in previous study, were found in tomato. Tomato mRNA database was further compared with the newly identified miRNA sequences with BLAST, and 42 potential targets of miRNAs were identified. According to the annotations of tomato mRNAs provided by the website ( ), miRNA target genes were classified into four groups, in which transcription factors regulating growth and development, signal pathway transduction, and metabolism of tomato plants were in the majority. Russian Journal of Plant Physiology Springer Journals

Computational predicting novel MicroRNAs in tomato and validating with RT-PCR

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2010 by Pleiades Publishing, Ltd.
Life Sciences; Plant Sciences ; Plant Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial