Computational identification of miRNA genes and their targets in mulberry

Computational identification of miRNA genes and their targets in mulberry MicroRNAs (miRNA) are a class of tiny non protein coding and regulatory RNA molecules about 18 to 26 nt in length. miRNA regulate gene expression via the degradation or translational inhibition of their target mRNAs. Nucleotide sequences of miRNAs are highly conserved among various organisms; this forms the key feature behind the identification of miRNAs in plant species by homology alignment. So far, little is known about miRNA in mulberry (Morus alba L.) species. In our study, a computational method was used for detection of mulberry miRNAs. A total of six miRNAs were identified. The six miRNAs may regulate twenty-two potential targets, which are predicted to encode transcription factors that regulate plant development, signaling, and metabolism. To validate the prediction of miRNAs in mulberry, a RT-PCR experimental method was performed and five of these miRNAs were found to be expressed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Computational identification of miRNA genes and their targets in mulberry

Loading next page...
 
/lp/springer_journal/computational-identification-of-mirna-genes-and-their-targets-in-exRZUCDtYU
Publisher
Springer Journals
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714040104
Publisher site
See Article on Publisher Site

Abstract

MicroRNAs (miRNA) are a class of tiny non protein coding and regulatory RNA molecules about 18 to 26 nt in length. miRNA regulate gene expression via the degradation or translational inhibition of their target mRNAs. Nucleotide sequences of miRNAs are highly conserved among various organisms; this forms the key feature behind the identification of miRNAs in plant species by homology alignment. So far, little is known about miRNA in mulberry (Morus alba L.) species. In our study, a computational method was used for detection of mulberry miRNAs. A total of six miRNAs were identified. The six miRNAs may regulate twenty-two potential targets, which are predicted to encode transcription factors that regulate plant development, signaling, and metabolism. To validate the prediction of miRNAs in mulberry, a RT-PCR experimental method was performed and five of these miRNAs were found to be expressed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 24, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off