Computational and experimental investigation of the crystal orientation control effect on the electric permittivity and magnetic permeability of multiferroic composite materials

Computational and experimental investigation of the crystal orientation control effect on the... In this paper, the effect of crystal orientation control through polarization and magnetization treatments on physical properties was computationally and experimentally investigated for polycrystalline multiferroic composite materials consisting of ferroelectric and ferromagnetic phases. In the calculations, asymptotic homogenization theory was employed for scale-bridging between macrostructures and microstructures. The microstructural crystal orientations were ideally arranged on the assumption that the domain switching was perfectly done in both phases by a combination of external electric and magnetic fields in the vertical or horizontal direction. The homogenized physical properties, especially the electric permittivity and magnetic permeability, were compared among various microstructures with differently controlled crystal orientations for a BaTiO3/CoFe2O4 composite material. The computation identified an upper limit of the effect of crystal orientation control on physical properties. On the other hand, we focused on a polarization and magnetization treatment process as a case study, and then experimentally verified the effect of crystal orientation control. Specifically, a BaTiO3/Ni0.5Zn0.5Fe2O4 composite material was prepared through a wet mixing, molding, and sintering process, and then, it was poled electrically in the vertical direction and magnetically in the horizontal direction. Physical property measurements indicated that the in-plane components of the electric permittivity and magnetic permeability were increased, and the out-of-plane components were decreased by the polarization and magnetization treatments. The experimental results were qualitatively consistent with the computational results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mechanica Springer Journals

Computational and experimental investigation of the crystal orientation control effect on the electric permittivity and magnetic permeability of multiferroic composite materials

Loading next page...
 
/lp/springer_journal/computational-and-experimental-investigation-of-the-crystal-94HEurTaUX
Publisher
Springer Vienna
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Engineering; Theoretical and Applied Mechanics; Classical and Continuum Physics; Continuum Mechanics and Mechanics of Materials; Structural Mechanics; Vibration, Dynamical Systems, Control; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0001-5970
eISSN
1619-6937
D.O.I.
10.1007/s00707-015-1526-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial