Computational and experimental investigation of fluidic thrust vectoring actuator

Computational and experimental investigation of fluidic thrust vectoring actuator Fluidic thrust vectoring (FTV) control is an innovative technique employed to affect the pitch control of an air vehicle or an unmanned air vehicle in the absence of conventional control surfaces such as elevators. The main motivation in using FTV is to render the aircraft low observable. In this work, a relatively new concept called co-flow type of FTV concept is investigated. Wherein, a high velocity secondary jet is injected into the boundary layer of the primary jet causing deflection of main primary jet thereby enabling generation of pitch moment. Two sets of numerical simulations studies were undertaken, one for different ratios of Coanda surface radius (R) and primary height (h prim) while the other for different ratios of secondary gap height (∆h) and primary height (h prim). The insight gained from simulations guided the design of a working FTV test rig. A static test rig was manufactured where blower and a compressor were used to provide primary and secondary flows, respectively. Comparison of vectored jet behaviour predicted by computational fluid dynamics analyses is found to be in agreement with those obtained through experimentation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Computational and experimental investigation of fluidic thrust vectoring actuator

Loading next page...
 
/lp/springer_journal/computational-and-experimental-investigation-of-fluidic-thrust-V2HvOb40H3
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-018-1248-8
Publisher site
See Article on Publisher Site

Abstract

Fluidic thrust vectoring (FTV) control is an innovative technique employed to affect the pitch control of an air vehicle or an unmanned air vehicle in the absence of conventional control surfaces such as elevators. The main motivation in using FTV is to render the aircraft low observable. In this work, a relatively new concept called co-flow type of FTV concept is investigated. Wherein, a high velocity secondary jet is injected into the boundary layer of the primary jet causing deflection of main primary jet thereby enabling generation of pitch moment. Two sets of numerical simulations studies were undertaken, one for different ratios of Coanda surface radius (R) and primary height (h prim) while the other for different ratios of secondary gap height (∆h) and primary height (h prim). The insight gained from simulations guided the design of a working FTV test rig. A static test rig was manufactured where blower and a compressor were used to provide primary and secondary flows, respectively. Comparison of vectored jet behaviour predicted by computational fluid dynamics analyses is found to be in agreement with those obtained through experimentation.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off