Computational Analysis of Fire Dynamics Inside a Wind Turbine

Computational Analysis of Fire Dynamics Inside a Wind Turbine Wind turbines are generally considered cost-effective, reliable and sustainable energy sources. Fires are not common in wind turbines, but a significant number of fires occur every year due to the large number of turbines installed. Wind turbine fires are difficult to extinguish hence significant damage is expected. Due to the unmanned operation, the probability of a turbine being occupied during a fire is very low. However, operators can do several tasks every week, and hence be exposed to a certain risk. Moreover, there is a general lack of information about how a fire develops inside a wind turbine and the subsequent evolution of the tenability conditions during the time required for an eventual evacuation. Gamesa has been working on fire safety since 2013, using CFD fire modelling to provide insights on wind turbine fire development for the design of emergency procedures. The paper describes a fire hazard analysis performed in a Gamesa’s 2.5 MW turbine. A CFD simulation is carried out to estimate the effects during the first minutes of a typical wind turbine fire in an electrical cabinet. Results show that average oxygen concentration at the nacelle remains above 19.5% during the first 10 min; temperature remains below 60°C for 12 min if measured at 1.5 m; and visibility is on average assured at heights lower than 1.5 m, with values above 5 m during the first 8 min in worse locations, implying no danger for personnel. The potential of this type of analysis to design safer wind turbines under performance-based approaches is clearly demonstrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fire Technology Springer Journals

Computational Analysis of Fire Dynamics Inside a Wind Turbine

Loading next page...
 
/lp/springer_journal/computational-analysis-of-fire-dynamics-inside-a-wind-turbine-0q3ZHE30hV
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Civil Engineering; Classical Mechanics; Characterization and Evaluation of Materials; Physics, general
ISSN
0015-2684
eISSN
1572-8099
D.O.I.
10.1007/s10694-017-0664-0
Publisher site
See Article on Publisher Site

Abstract

Wind turbines are generally considered cost-effective, reliable and sustainable energy sources. Fires are not common in wind turbines, but a significant number of fires occur every year due to the large number of turbines installed. Wind turbine fires are difficult to extinguish hence significant damage is expected. Due to the unmanned operation, the probability of a turbine being occupied during a fire is very low. However, operators can do several tasks every week, and hence be exposed to a certain risk. Moreover, there is a general lack of information about how a fire develops inside a wind turbine and the subsequent evolution of the tenability conditions during the time required for an eventual evacuation. Gamesa has been working on fire safety since 2013, using CFD fire modelling to provide insights on wind turbine fire development for the design of emergency procedures. The paper describes a fire hazard analysis performed in a Gamesa’s 2.5 MW turbine. A CFD simulation is carried out to estimate the effects during the first minutes of a typical wind turbine fire in an electrical cabinet. Results show that average oxygen concentration at the nacelle remains above 19.5% during the first 10 min; temperature remains below 60°C for 12 min if measured at 1.5 m; and visibility is on average assured at heights lower than 1.5 m, with values above 5 m during the first 8 min in worse locations, implying no danger for personnel. The potential of this type of analysis to design safer wind turbines under performance-based approaches is clearly demonstrated.

Journal

Fire TechnologySpringer Journals

Published: Jun 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off