Computation of Bounds on Population Parameters When the Data Are Incomplete

Computation of Bounds on Population Parameters When the Data Are Incomplete This paper continues our research on the identification and estimation of statistical functionals when the sampling process produces incomplete data due to missing observations or interval measurement of variables. Incomplete data usually cause population parameters of interest in applications to be unidentified except under untestable and often controversial assumptions. However, it is often possible to identify sharp bounds on these parameters. The bounds are functionals of the population distribution of the available data and do not rely on untestable assumptions about the process through which data become incomplete. They contain all logically possible values of the population parameters. Moreover, every parameter value within the bounds is consistent with some model of the process that generates incomplete data. The bounds can be estimated consistently by replacing the population distribution of the data with the empirical distribution in the functionals that give the bounds. In practice, this is straightforward in some circumstances but computationally burdensome in others; in general, the bounds are the solutions to non-convex mathematical programming problems that can be difficult to solve. Horowitz and Manski (Censoring of Outcomes and Regressors Due to Survey Nonresponse: Identification and Estimation Using Weights and Imputations, Journal of Econometrics 84 (1998), pp. 37–58; Nonparametric Analysis of Randomized Experiments with Missing Covariate and Outcome Data, Journal of the American Statistical Association 95 (2000), pp. 77–84) studied nonparametric mean regression with missing data. In this paper, we first describe the general problem. We then present new findings on the computation of bounds on best linear predictors under square loss. We describe a genetic algorithm to compute sharp bounds and a min-imax approach yielding simple but non-sharp outer bounds. We use actual data to demonstrate the computations. Reliable Computing Springer Journals

Computation of Bounds on Population Parameters When the Data Are Incomplete

Loading next page...
Kluwer Academic Publishers
Copyright © 2003 by Kluwer Academic Publishers
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial