Comprehensive gene expression analysis by transcript profiling

Comprehensive gene expression analysis by transcript profiling After the completion of the genomic sequence of Arabidopsis thaliana, it is now a priority to identify all the genes, their patterns of expression and functions. Transcript profiling is playing a substantial role in annotating and determining gene functions, having advanced from one-gene-at-a-time methods to technologies that provide a holistic view of the genome. In this review, comprehensive transcript profiling methodologies are described, including two that are used extensively by the authors, cDNA-AFLP and cDNA microarraying. Both these technologies illustrate the requirement to integrate molecular biology, automation, LIMS and data analysis. With so much uncharted territory in the Arabidopsis genome, and the desire to tackle complex biological traits, such integrated systems will provide a rich source of data for the correlative, functional annotation of genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals
Loading next page...
 
/lp/springer_journal/comprehensive-gene-expression-analysis-by-transcript-profiling-rs6gmashf2
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1013722224489
Publisher site
See Article on Publisher Site

Abstract

After the completion of the genomic sequence of Arabidopsis thaliana, it is now a priority to identify all the genes, their patterns of expression and functions. Transcript profiling is playing a substantial role in annotating and determining gene functions, having advanced from one-gene-at-a-time methods to technologies that provide a holistic view of the genome. In this review, comprehensive transcript profiling methodologies are described, including two that are used extensively by the authors, cDNA-AFLP and cDNA microarraying. Both these technologies illustrate the requirement to integrate molecular biology, automation, LIMS and data analysis. With so much uncharted territory in the Arabidopsis genome, and the desire to tackle complex biological traits, such integrated systems will provide a rich source of data for the correlative, functional annotation of genes.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off