Compound fault prediction of rolling bearing using multimedia data

Compound fault prediction of rolling bearing using multimedia data Catastrophic failure of mechanical systems due to faults occurring on rolling bearing is still a great challenge. These faults, which are of multiple type, are compounded in nature. Vibration analysis of multimedia signals is one of the most effective techniques for the health monitoring of these bearings. A compound fault signal usually consists of multiple characteristic signals and strong confusion noise, which makes it a tough task to separate weak fault signals from them. To resolve the compound fault diagnosis problem of rolling bearings byseparation of multimedia signals’ (obtained from acoustic or acceleration sensors), ensemble empirical mode decomposition (EEMD) method along with some classifier (like independent component analysis (ICA) technique) has been used to some degree of success. But, they are not found capable of detecting difficult faults existing on small balls of the bearing. In order to solve this problem, we are going to propose a new method based on use of Combined Mode Functions (CMF) for selecting the intrinsic mode functions(IMFs) instead of the maximum cross correlation coefficient based EEMD technique, sandwiched with, Convolution Neural Networks (CNN), which are deep neural nets, used as fault classifiers. This composite CNN-CMF-EEMD methodovercomes the deficiencies of other approaches, such as the inability to learn the complex non-linear relationships in fault diagnosis issues and fine compound faults like those occurring on small balls of the bearing. The difficult compound faults can be separated effectively by executing CNN-CMF-EEMD method, which makes the fault features more easily extracted and more clearly identified. Experimental results reinforce the effectiveness of using CNN-CMF--EEMD technique for fine compound faults. A comparison of CNN-CMF-EEMD with Artificial Neural Networks (ANN) based ANN-CMF-EEMD shows the capability of CNN as a powerful classifier in the domain of compound fault features of rolling bearing. Multimedia Tools and Applications Springer Journals

Compound fault prediction of rolling bearing using multimedia data

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial