Composition of root exometabolites of the symbiotically effective pea cultivar triumph and its parental forms

Composition of root exometabolites of the symbiotically effective pea cultivar triumph and its... The qualitative and quantitative composition of low-molecular exometabolites in roots of pea (Pisum sativum L.) was studied with a cultivar Triumph and its parental forms (a symbiotically effective variety k-8274 and a modern highly productive cv. Classic). A relationship between root exudation and the ability of cultivars to establish symbiosis was analyzed. In the early stages of plant growth, the roots of cv. Triumph exhibited low exudation of organic acids, sugars, and amino acids. The quantitative composition of organic acids in the root exudates of cv. Triumph was close to that of cv. k-8274, whereas the composition of sugars and amino acids was similar to that of cv. Classic. In the field experiment, the effect of inoculation with a mixture of rhizobium strains and mycorrhizal fungus on plant growth was more evident in cv. Triumph than in cvs. Classic and k-8274. The results suggest that the high symbiotic potential of cv. Triumph is related to exudation of pyruvic and succinic acids that were the major components of root exometabolites both in Triumph and k-8274 cultivars. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Composition of root exometabolites of the symbiotically effective pea cultivar triumph and its parental forms

Loading next page...
 
/lp/springer_journal/composition-of-root-exometabolites-of-the-symbiotically-effective-pea-gtcSfWltmW
Publisher
Springer US
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714010087
Publisher site
See Article on Publisher Site

Abstract

The qualitative and quantitative composition of low-molecular exometabolites in roots of pea (Pisum sativum L.) was studied with a cultivar Triumph and its parental forms (a symbiotically effective variety k-8274 and a modern highly productive cv. Classic). A relationship between root exudation and the ability of cultivars to establish symbiosis was analyzed. In the early stages of plant growth, the roots of cv. Triumph exhibited low exudation of organic acids, sugars, and amino acids. The quantitative composition of organic acids in the root exudates of cv. Triumph was close to that of cv. k-8274, whereas the composition of sugars and amino acids was similar to that of cv. Classic. In the field experiment, the effect of inoculation with a mixture of rhizobium strains and mycorrhizal fungus on plant growth was more evident in cv. Triumph than in cvs. Classic and k-8274. The results suggest that the high symbiotic potential of cv. Triumph is related to exudation of pyruvic and succinic acids that were the major components of root exometabolites both in Triumph and k-8274 cultivars.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 28, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off