Composition of beryllium oxide ceramics

Composition of beryllium oxide ceramics The physicochemical and electrophysical properties of ceramics based on BeO without impregnation and after impregnation with an aqueous solution of sodium carbonate Na2CO3 are studied. It is established that impregnation leads to preparation of ceramic specimens with a white color, which develop increased porosity, lower amount of impurities and smaller average microcrystal size, although it has little effect on their electrophysical properties. In order to improve these properties considerably it is necessary to increase ceramic density by increasing its sintering temperature by 20 – 40 K. Values of electrical permittivity δ and dielectric loss tangent tg δ are determined for a series of BeO ceramic specimens (732 pieces), having identical geometric dimensions, but prepared from original BeO powder of different batches. Studies show considerable scatter in the distribution of these parameters, which points to a requirement for further improvement of BeO-ceramic preparation technology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Refractories and Industrial Ceramics Springer Journals
Loading next page...
 
/lp/springer_journal/composition-of-beryllium-oxide-ceramics-3q5iZRXx0I
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, Inc.
Subject
Materials Science; Characterization and Evaluation of Materials; Materials Science, general; Ceramics, Glass, Composites, Natural Materials
ISSN
1083-4877
eISSN
1573-9139
D.O.I.
10.1007/s11148-011-9329-6
Publisher site
See Article on Publisher Site

Abstract

The physicochemical and electrophysical properties of ceramics based on BeO without impregnation and after impregnation with an aqueous solution of sodium carbonate Na2CO3 are studied. It is established that impregnation leads to preparation of ceramic specimens with a white color, which develop increased porosity, lower amount of impurities and smaller average microcrystal size, although it has little effect on their electrophysical properties. In order to improve these properties considerably it is necessary to increase ceramic density by increasing its sintering temperature by 20 – 40 K. Values of electrical permittivity δ and dielectric loss tangent tg δ are determined for a series of BeO ceramic specimens (732 pieces), having identical geometric dimensions, but prepared from original BeO powder of different batches. Studies show considerable scatter in the distribution of these parameters, which points to a requirement for further improvement of BeO-ceramic preparation technology.

Journal

Refractories and Industrial CeramicsSpringer Journals

Published: Apr 5, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off