Complexity of Some Linear Problems with Interval Data

Complexity of Some Linear Problems with Interval Data During the recent years, a number of linear problems with interval data have been proved to be NP-hard. These results may seem rather obscure as regards the ways in which they were obtained. This survey paper is aimed at demonstrating that in fact it is not so, since many of these results follow easily from the recently established fact that for the subordinate matrix norm ‖ · ‖∞,1 it is NP-hard to decide whether ‖A‖∞,1 ≥ 1 holds, even in the class of symmetric positive definite rational matrices. After a brief introduction into the basic topics of the complexity theory in Section 1 and formulation of the underlying norm complexity result in Section 2, we present NP-hardness results for checking properties of interval matrices (Section 3), computing enclosures (Section 4), solvability of rectangular linear interval systems (Section 5), and linear and quadratic programming (Section 6). Due to space limitations, proofs are mostly only ketched to reveal the unifying role of the norm complexity result; technical details are omitted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Complexity of Some Linear Problems with Interval Data

Loading next page...
 
/lp/springer_journal/complexity-of-some-linear-problems-with-interval-data-coSzihAJX2
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/A:1009987227018
Publisher site
See Article on Publisher Site

Abstract

During the recent years, a number of linear problems with interval data have been proved to be NP-hard. These results may seem rather obscure as regards the ways in which they were obtained. This survey paper is aimed at demonstrating that in fact it is not so, since many of these results follow easily from the recently established fact that for the subordinate matrix norm ‖ · ‖∞,1 it is NP-hard to decide whether ‖A‖∞,1 ≥ 1 holds, even in the class of symmetric positive definite rational matrices. After a brief introduction into the basic topics of the complexity theory in Section 1 and formulation of the underlying norm complexity result in Section 2, we present NP-hardness results for checking properties of interval matrices (Section 3), computing enclosures (Section 4), solvability of rectangular linear interval systems (Section 5), and linear and quadratic programming (Section 6). Due to space limitations, proofs are mostly only ketched to reveal the unifying role of the norm complexity result; technical details are omitted.

Journal

Reliable ComputingSpringer Journals

Published: Oct 14, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off