Complexity Estimation for an Algorithm of Searching for Zero of a Piecewise Linear Convex Function

Complexity Estimation for an Algorithm of Searching for Zero of a Piecewise Linear Convex Function It is known that the problem of the orthogonal projection of a point to the standard simplex can be reduced to solution of a scalar equation. In this article, the complexity is analyzed of an algorithm of searching for zero of a piecewise linear convex function which is proposed in [30]. The analysis is carried out of the best and worst cases of the input data for the algorithm. To this end, the largest and smallest numbers of iterations of the algorithm are studied as functions of the size of the input data. It is shown that, in the case of equality of elements of the input set, the algorithm performs the smallest number of iterations. In the case of different elements of the input set, the number of iterations is maximal and depends rather weakly on the particular values of the elements of the set. The results of numerical experiments with random input data of large dimension are presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied and Industrial Mathematics Springer Journals

Complexity Estimation for an Algorithm of Searching for Zero of a Piecewise Linear Convex Function

Loading next page...
 
/lp/springer_journal/complexity-estimation-for-an-algorithm-of-searching-for-zero-of-a-lnZkB2J0Br
Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Mathematics; Mathematics, general
ISSN
1990-4789
eISSN
1990-4797
D.O.I.
10.1134/S1990478918020126
Publisher site
See Article on Publisher Site

Abstract

It is known that the problem of the orthogonal projection of a point to the standard simplex can be reduced to solution of a scalar equation. In this article, the complexity is analyzed of an algorithm of searching for zero of a piecewise linear convex function which is proposed in [30]. The analysis is carried out of the best and worst cases of the input data for the algorithm. To this end, the largest and smallest numbers of iterations of the algorithm are studied as functions of the size of the input data. It is shown that, in the case of equality of elements of the input set, the algorithm performs the smallest number of iterations. In the case of different elements of the input set, the number of iterations is maximal and depends rather weakly on the particular values of the elements of the set. The results of numerical experiments with random input data of large dimension are presented.

Journal

Journal of Applied and Industrial MathematicsSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off