Complexity-compression tradeoffs in lossy compression via efficient random codebooks and databases

Complexity-compression tradeoffs in lossy compression via efficient random codebooks and databases The compression-complexity trade-off of lossy compression algorithms that are based on a random codebook or a random database is examined. Motivated, in part, by recent results of Gupta-Verdú-Weissman (GVW) and their underlying connections with the pattern-matching scheme of Kontoyiannis’ lossy Lempel-Ziv algorithm, we introduce a nonuniversal version of the lossy Lempel-Ziv method (termed LLZ). The optimality of LLZ for memory-less sources is established, and its performance is compared to that of the GVW divide-and-conquer approach. Experimental results indicate that the GVW approach often yields better compression than LLZ, but at the price of much higher memory requirements. To combine the advantages of both, we introduce a hybrid algorithm (HYB) that utilizes both the divide-and-conquer idea of GVW and the single-database structure of LLZ. It is proved that HYB shares with GVW the exact same rate-distortion performance and implementation complexity, while, like LLZ, requiring less memory, by a factor which may become unbounded, depending on the choice of the relevant design parameters. Experimental results are also presented, illustrating the performance of all three methods on data generated by simple discrete memory-less sources. In particular, the HYB algorithm is shown to outperform existing schemes for the compression of some simple discrete sources with respect to the Hamming distortion criterion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Complexity-compression tradeoffs in lossy compression via efficient random codebooks and databases

Loading next page...
 
/lp/springer_journal/complexity-compression-tradeoffs-in-lossy-compression-via-efficient-gj4oNvvf75
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1134/S0032946012040072
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial