Complexity-compression tradeoffs in lossy compression via efficient random codebooks and databases

Complexity-compression tradeoffs in lossy compression via efficient random codebooks and databases The compression-complexity trade-off of lossy compression algorithms that are based on a random codebook or a random database is examined. Motivated, in part, by recent results of Gupta-Verdú-Weissman (GVW) and their underlying connections with the pattern-matching scheme of Kontoyiannis’ lossy Lempel-Ziv algorithm, we introduce a nonuniversal version of the lossy Lempel-Ziv method (termed LLZ). The optimality of LLZ for memory-less sources is established, and its performance is compared to that of the GVW divide-and-conquer approach. Experimental results indicate that the GVW approach often yields better compression than LLZ, but at the price of much higher memory requirements. To combine the advantages of both, we introduce a hybrid algorithm (HYB) that utilizes both the divide-and-conquer idea of GVW and the single-database structure of LLZ. It is proved that HYB shares with GVW the exact same rate-distortion performance and implementation complexity, while, like LLZ, requiring less memory, by a factor which may become unbounded, depending on the choice of the relevant design parameters. Experimental results are also presented, illustrating the performance of all three methods on data generated by simple discrete memory-less sources. In particular, the HYB algorithm is shown to outperform existing schemes for the compression of some simple discrete sources with respect to the Hamming distortion criterion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Complexity-compression tradeoffs in lossy compression via efficient random codebooks and databases

Loading next page...
 
/lp/springer_journal/complexity-compression-tradeoffs-in-lossy-compression-via-efficient-gj4oNvvf75
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1134/S0032946012040072
Publisher site
See Article on Publisher Site

Abstract

The compression-complexity trade-off of lossy compression algorithms that are based on a random codebook or a random database is examined. Motivated, in part, by recent results of Gupta-Verdú-Weissman (GVW) and their underlying connections with the pattern-matching scheme of Kontoyiannis’ lossy Lempel-Ziv algorithm, we introduce a nonuniversal version of the lossy Lempel-Ziv method (termed LLZ). The optimality of LLZ for memory-less sources is established, and its performance is compared to that of the GVW divide-and-conquer approach. Experimental results indicate that the GVW approach often yields better compression than LLZ, but at the price of much higher memory requirements. To combine the advantages of both, we introduce a hybrid algorithm (HYB) that utilizes both the divide-and-conquer idea of GVW and the single-database structure of LLZ. It is proved that HYB shares with GVW the exact same rate-distortion performance and implementation complexity, while, like LLZ, requiring less memory, by a factor which may become unbounded, depending on the choice of the relevant design parameters. Experimental results are also presented, illustrating the performance of all three methods on data generated by simple discrete memory-less sources. In particular, the HYB algorithm is shown to outperform existing schemes for the compression of some simple discrete sources with respect to the Hamming distortion criterion.

Journal

Problems of Information TransmissionSpringer Journals

Published: Jan 24, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off