Complex wasp-waist regulation of pelagic ecosystems in the Pacific Ocean

Complex wasp-waist regulation of pelagic ecosystems in the Pacific Ocean ‘Wasp-waist’ control of marine ecosystems is driven by a combination of top-down and bottom-up forcing by a few abundant short-lived species occupying intermediate trophic levels that form a narrow ‘waist’ through which energy flow from low to high trophic levels is controlled. It has been assumed that wasp-waist control occurs primarily in highly productive and species-poor systems (e.g. upwelling regions). Two large, species-rich, pelagic ecosystems in the relatively oligotrophic eastern and western Pacific Ocean also show wasp-waist-like structure, in that short-lived and fast-growing cephalopods and fishes at intermediate trophic levels comprise the vast majority of the biomass. Possible forcing dynamics of these systems were examined using ecosystem models by altering the biomass of phytoplankton (bottom-up forcing), large pelagic predators (top-down forcing), and intermediate ‘wasp-waist’ functional groups independently and observing how these changes propagated throughout the ecosystem. The largest effects were seen when altering the biomass of mid trophic-level epipelagic and mesopelagic fishes, where dramatic trophic cascades occurred both upward and downward in the system. We conclude that the high productivity and standing biomass of animals at intermediate trophic levels has a strong top-down influence on the abundance of primary producers. Furthermore, their importance as prey for large predators results in bottom-up controls on populations at higher trophic levels. We show that these tropical pelagic ecosystems possess a complex structure whereby several waist groups and alternate trophic pathways from primary producers to apex predators can cause unpredictable effects when the biomasses of particular functional groups are altered. Such models highlight the possible structuring mechanisms in pelagic systems, which have implications for fisheries that exploit these wasp-waist groups, such as squid fisheries, as well as for fisheries of top predators such as tunas and billfishes that prey upon wasp-waist species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Complex wasp-waist regulation of pelagic ecosystems in the Pacific Ocean

Loading next page...
 
/lp/springer_journal/complex-wasp-waist-regulation-of-pelagic-ecosystems-in-the-pacific-FMQwGuU532
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-012-9301-7
Publisher site
See Article on Publisher Site

Abstract

‘Wasp-waist’ control of marine ecosystems is driven by a combination of top-down and bottom-up forcing by a few abundant short-lived species occupying intermediate trophic levels that form a narrow ‘waist’ through which energy flow from low to high trophic levels is controlled. It has been assumed that wasp-waist control occurs primarily in highly productive and species-poor systems (e.g. upwelling regions). Two large, species-rich, pelagic ecosystems in the relatively oligotrophic eastern and western Pacific Ocean also show wasp-waist-like structure, in that short-lived and fast-growing cephalopods and fishes at intermediate trophic levels comprise the vast majority of the biomass. Possible forcing dynamics of these systems were examined using ecosystem models by altering the biomass of phytoplankton (bottom-up forcing), large pelagic predators (top-down forcing), and intermediate ‘wasp-waist’ functional groups independently and observing how these changes propagated throughout the ecosystem. The largest effects were seen when altering the biomass of mid trophic-level epipelagic and mesopelagic fishes, where dramatic trophic cascades occurred both upward and downward in the system. We conclude that the high productivity and standing biomass of animals at intermediate trophic levels has a strong top-down influence on the abundance of primary producers. Furthermore, their importance as prey for large predators results in bottom-up controls on populations at higher trophic levels. We show that these tropical pelagic ecosystems possess a complex structure whereby several waist groups and alternate trophic pathways from primary producers to apex predators can cause unpredictable effects when the biomasses of particular functional groups are altered. Such models highlight the possible structuring mechanisms in pelagic systems, which have implications for fisheries that exploit these wasp-waist groups, such as squid fisheries, as well as for fisheries of top predators such as tunas and billfishes that prey upon wasp-waist species.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Dec 29, 2012

References

  • Fishery-induced changes in a marine ecosystem: insights for models of the Gulf of Thailand
    Christensen, V
  • Hundred-year decline of North Atlantic predatory fishes
    Christensen, V; Guenette, S; Heymans, JJ; Walters, CJ; Watson, R; Zeller, D
  • Contrasting recreational and commercial fishing: searching for common issues to promote unified conservation of fisheries resources and aquatic environments
    Cooke, SJ; Cowx, IG
  • Trophic role of small pelagic fishes in a tropical upwelling ecosystem
    Duarte, LO; García, CB
  • Alternative attractors in marine ecosystems: a comparative analysis of fishing effects
    Feng, JF; Wang, HL; Huang, DW; Li, SP
  • Ecological effects of longline fishing and climate change on the pelagic ecosystem off eastern Australia
    Griffiths, SP; Young, JW; Lansdell, MJ; Campbell, RA; Hampton, J; Hoyle, SD

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off