Complex random matrices and Rician channel capacity

Complex random matrices and Rician channel capacity Eigenvalue densities of complex noncentral Wishart matrices are investigated to study an open problem in information theory. Specifically, the largest, smallest, and joint eigenvalue densities of complex noncentral Wishart matrices are derived. These densities are expressed in terms of complex zonal polynomials and invariant polynomials. A connection between the complex Wishart matrix theory and information theory is given. This facilitates evaluation of the most important information-theoretic measure, the so-called ergodic channel capacity. In particular, the capacity of multiple-input multiple-output (MIMO) Rician distributed channels is investigated. We consider both spatially correlated and uncorrelated MIMO Rician channels and derive exact and easily computable tight upper bound formulas for ergodic capacities. Numerical results are also given, which show how the channel correlation degrades the capacity of the communication system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Complex random matrices and Rician channel capacity

Loading next page...
 
/lp/springer_journal/complex-random-matrices-and-rician-channel-capacity-oaeBkhD3lM
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1007/s11122-005-0006-6
Publisher site
See Article on Publisher Site

Abstract

Eigenvalue densities of complex noncentral Wishart matrices are investigated to study an open problem in information theory. Specifically, the largest, smallest, and joint eigenvalue densities of complex noncentral Wishart matrices are derived. These densities are expressed in terms of complex zonal polynomials and invariant polynomials. A connection between the complex Wishart matrix theory and information theory is given. This facilitates evaluation of the most important information-theoretic measure, the so-called ergodic channel capacity. In particular, the capacity of multiple-input multiple-output (MIMO) Rician distributed channels is investigated. We consider both spatially correlated and uncorrelated MIMO Rician channels and derive exact and easily computable tight upper bound formulas for ergodic capacities. Numerical results are also given, which show how the channel correlation degrades the capacity of the communication system.

Journal

Problems of Information TransmissionSpringer Journals

Published: Apr 18, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off