Complex random matrices and Rician channel capacity

Complex random matrices and Rician channel capacity Eigenvalue densities of complex noncentral Wishart matrices are investigated to study an open problem in information theory. Specifically, the largest, smallest, and joint eigenvalue densities of complex noncentral Wishart matrices are derived. These densities are expressed in terms of complex zonal polynomials and invariant polynomials. A connection between the complex Wishart matrix theory and information theory is given. This facilitates evaluation of the most important information-theoretic measure, the so-called ergodic channel capacity. In particular, the capacity of multiple-input multiple-output (MIMO) Rician distributed channels is investigated. We consider both spatially correlated and uncorrelated MIMO Rician channels and derive exact and easily computable tight upper bound formulas for ergodic capacities. Numerical results are also given, which show how the channel correlation degrades the capacity of the communication system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Complex random matrices and Rician channel capacity

Loading next page...
 
/lp/springer_journal/complex-random-matrices-and-rician-channel-capacity-oaeBkhD3lM
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1007/s11122-005-0006-6
Publisher site
See Article on Publisher Site

Abstract

Eigenvalue densities of complex noncentral Wishart matrices are investigated to study an open problem in information theory. Specifically, the largest, smallest, and joint eigenvalue densities of complex noncentral Wishart matrices are derived. These densities are expressed in terms of complex zonal polynomials and invariant polynomials. A connection between the complex Wishart matrix theory and information theory is given. This facilitates evaluation of the most important information-theoretic measure, the so-called ergodic channel capacity. In particular, the capacity of multiple-input multiple-output (MIMO) Rician distributed channels is investigated. We consider both spatially correlated and uncorrelated MIMO Rician channels and derive exact and easily computable tight upper bound formulas for ergodic capacities. Numerical results are also given, which show how the channel correlation degrades the capacity of the communication system.

Journal

Problems of Information TransmissionSpringer Journals

Published: Apr 18, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off