Complex random matrices and Rician channel capacity

Complex random matrices and Rician channel capacity Eigenvalue densities of complex noncentral Wishart matrices are investigated to study an open problem in information theory. Specifically, the largest, smallest, and joint eigenvalue densities of complex noncentral Wishart matrices are derived. These densities are expressed in terms of complex zonal polynomials and invariant polynomials. A connection between the complex Wishart matrix theory and information theory is given. This facilitates evaluation of the most important information-theoretic measure, the so-called ergodic channel capacity. In particular, the capacity of multiple-input multiple-output (MIMO) Rician distributed channels is investigated. We consider both spatially correlated and uncorrelated MIMO Rician channels and derive exact and easily computable tight upper bound formulas for ergodic capacities. Numerical results are also given, which show how the channel correlation degrades the capacity of the communication system. Problems of Information Transmission Springer Journals

Complex random matrices and Rician channel capacity

Loading next page...
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial