Complex fluids affect low-Reynolds number locomotion in a kinematic-dependent manner

Complex fluids affect low-Reynolds number locomotion in a kinematic-dependent manner In order to improve our understanding of the self-propulsion of swimming microorganisms in viscoelastic fluids, we study experimentally the locomotion of three artificial macro-scale swimmers in Newtonian and synthetic Boger fluids. Each swimmer is made of a rigid head and a tail whose dynamics leads to viscous propulsion. By considering three different kinematics of the tail (helical rigid, planar flexible, and helical flexible) in the same fluid, we demonstrate experimentally that the impact of viscoelasticity on the locomotion speed of the swimmers depends crucially on the kinematics of the tails. Specifically, rigid helical swimmers see no change in their swimming speed, swimmers with planar rod-like flexible tails always swim faster, while those with flexible ribbon-like tails undergoing helical deformation go systematically slower. Our study points to a subtle interplay between tail deformation, actuation, and viscoelastic stresses, and is relevant to the three-dimensional dynamics of flagellated cells in non-Newtonian fluids. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Complex fluids affect low-Reynolds number locomotion in a kinematic-dependent manner

Loading next page...
 
/lp/springer_journal/complex-fluids-affect-low-reynolds-number-locomotion-in-a-kinematic-PBXmOOtoeL
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1961-3
Publisher site
See Article on Publisher Site

Abstract

In order to improve our understanding of the self-propulsion of swimming microorganisms in viscoelastic fluids, we study experimentally the locomotion of three artificial macro-scale swimmers in Newtonian and synthetic Boger fluids. Each swimmer is made of a rigid head and a tail whose dynamics leads to viscous propulsion. By considering three different kinematics of the tail (helical rigid, planar flexible, and helical flexible) in the same fluid, we demonstrate experimentally that the impact of viscoelasticity on the locomotion speed of the swimmers depends crucially on the kinematics of the tails. Specifically, rigid helical swimmers see no change in their swimming speed, swimmers with planar rod-like flexible tails always swim faster, while those with flexible ribbon-like tails undergoing helical deformation go systematically slower. Our study points to a subtle interplay between tail deformation, actuation, and viscoelastic stresses, and is relevant to the three-dimensional dynamics of flagellated cells in non-Newtonian fluids.

Journal

Experiments in FluidsSpringer Journals

Published: May 3, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off